Treponema pallidum in nerve fibres

N. M. OVCINNIKOV and V. V. DELEKTORSKII

Department of Microbiology, Central Research Institute of Skin and Venereal Diseases, Ministry of Health, Moscow, U.S.S.R.

In our previous reports (1972a, b) we have demonstrated the distribution of Treponema pallidum in blood vessels and adjacent cells. We proved that treponemes may reside in periendothelial areas and interstitial spaces, as well as migrating freely into and out of the blood vessels. The phagocytosis of treponemes by perivascular and other cells has also been described.

In this report we present electron micrographs showing T. pallidum in various parts of nerve fibres. In reviewing the literature, we found no reference to such findings in electron microscopic studies, probably because it is difficult to detect treponemes in peripheral nervous tissue. Grigoryev (1938), using light microscopy, found spirochaetes in the endoneurium and perineurium of nerve fibres within a primary syphiloma.

Material and methods

We studied a fragment of a chancre from rabbit No. 8944 inoculated with lymph node material from another rabbit, which had been infected 6 weeks before and treated with 800,000 units of benzathine penicillin. The lymph nodes were removed at a time when the Wassermann reaction was negative and the FTA 200 test showed ++ + +.

Within a month after infection, rabbit No. 8944 developed pea-sized nodules, which grew steadily and in a week became very large, densely infiltrated, and covered with a firm dry sanguineous crust. Numerous treponemes were present. The rabbit was exsanguinated and the chancre was removed for electron microscopic study.

The material was processed by the methods described in our previous publications.

Findings and discussion

Figs 1 and 1A show in cross-section fibres of a peripheral nerve within the rabbit syphiloma. The structures seen include the cytoplasm of a Schwann cell with axons (A) and their associated mesaxons (mes), cytoplasmic filaments, synaptic vesicles (sv), the basal lamina (bl), and the endoneurium (en), with treponemes (T) distributed among collagen fibres (cl). Around a treponeme the collagen fibres are destroyed (Details A and B). This phenomenon is observed also in other areas where treponemes lie in endoneurial collagen. The treponemes themselves are almost unaltered, their fibrils and the outer body wall being distinctly visible. The perineurium (pn) consists of elongated cells encircling the endoneurium. A small amount of endoplasmic reticulum (er) and numerous pinocytic vesicles are also displayed. The perineurium is enveloped by the basal lamina; the epineurium (ep) is filled with transversely-cut collagen fibres and contains treponemes.

A similar appearance is shown in Figs 2 and 2A, but here many treponemes are present in the endo-, peri-, and epineurium. The organisms are well preserved, and the adjacent collagen is destroyed. Myelin bodies (mb) and lipofuscin (lf) are also visible.

Fig. 3 demonstrates the same structures, but the peripheral parts of the endoneurium and the epineurium contain more treponemes. The collagen around them is destroyed. There are many pinocytic vesicles in the perineurium.

Along with the above structures, Fig. 4 clearly shows Schwann cells with neurofilaments, axons and mesaxons, the axolemma (al), synaptic vesicles (sv), and the axoplasm with transversely-cut axoplasmic filaments. The treponemes residing in the endoneurium have undergone no significant morphological alterations, but the neighbouring collagen fibres are destroyed.

The nerve fibres were surrounded by the usual cellular elements, some of which contained phagocytosed treponemes.

Thus we may conclude that the nerve is involved in the specific pathological process, but the significance of the presence of treponemes in the nerve fibre requires further study.

Firstly, in our opinion, this indicates that as well as passing along the blood stream infection may be transmitted directly along the nerves to the spinal canal, meninges, and cerebrospinal fluid. The changes in the CSF found in some cases of primary syphilis may arise in this way.

Received for publication May 17, 1974
FIG. 1 Cross-section of nerve fibre from rabbit syphiloma. Treponemes are present in endo- and epineurium. × 30,000

FIG. 1A T. pallidum in cross section. Fibrils (f) and outer wall (me) are clearly visible. × 70,000

FIG. 1B (overleaf)
FIG. 1B Axons (A), mesaxon (mes), Schwann cell cytoplasm (csch) with filaments (fsch) and vesicles, and the basal lamina (bl) are distinctly outlined. The endoneurium contains a well-preserved treponeme. × 70,000
FIG. 2 Cross-section of nerve fibre from rabbit syphiloma. × 10,000

FIG. 2A (overleaf)
FIG. 2A Treponemes are present in the endo-, peri-, and epineurium. Collagen (cl) around them has disappeared. Along with the structures displayed in Fig. 1, this micrograph shows myelin bodies (mb), lipofuscin (lf), and mitochondria, which are somewhat damaged. Numerous pinocytotic vesicles (pv) are seen in the perineurium. × 30,000
FIG. 3 Cross-section of nerve fibre from rabbit syphiloma. ×20,000

FIG. 3A (overleaf)
Fig 3A T. pallidum in the endo- and epineurium. x35,000
Cross-section of nerve fibre from rabbit syphiloma. Schwann cells (csch) surrounded by basal lamina (bl). Axons (A) with axoplasmic vesicles, filaments, axolemma (al), as well as mesaxons (mes) are well displayed. The Schwann cell cytoplasm has numerous filaments. × 35,000
Secondly, these observations suggest an additional mechanism for the meningeal symptoms which sometimes occur in the early stage of the disease. As well as being induced directly by the invading infection they could represent a reflex mediated by nerve impulses arising in the lesion.

Thirdly, the presence of *T. pallidum* in the nerve may explain the absence of pain, since the organisms may injure the sensory fibres innervating the syphilita.

Summary

Ultrathin sections of a rabbit scrotal syphiloma were examined by electron microscopy. Treponemes were observed in the endo-, peri-, and epineurium of the nerve fibre. The significance of these findings, in that infection may be transmitted via the nerve fibres and pain reduced by damage to the afferent fibres, are discussed.

References

Grigoriev, P. S. (1938) 'Uchebnik venericheskikh i kojnih boleznej'. Biomedgiz. NKZ USSR

Ovčinnikov, N. M., and Delektorskij, V. V. (1970) *Bull. Wld Hlth Org.*, 42, 437

——, —— (1972a) *British J. vener. Dis.*, 48, 227

——, —— (1972b) *Ibid.*, 48, 327

Zavarzin, A. A., and Rumiacev, A. V. (1946) 'Curs gistoligii'. Medgiz, Moscow

Présence de *Treponema pallidum* dans les fibres nerveuses

Sommaire

Des coupes ultra-fines d'un syphilome scrotal de lapin furent examinées au microscope électronique. On observa des treponèmes dans l'endo- la péri- et l'épinèvre d'une fibre nerveuse. On discute de la signification de ces constatations et on pose la question de savoir si l'infection peut se transmettre par l'intermédiaire des fibres nerveuses et si une altération des nerfs afferents ne peut pas réduire les phénomènes douloureux.
Treponema pallidum in nerve fibres.

N M Ovcinnikov and V V Delektorskij

Br J Vener Dis 1975 51: 10-18
doi: 10.1136/sti.51.1.10

Updated information and services can be found at:
http://sti.bmj.com/content/51/1/10

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/