Ornidazole: A new antiprotozoal compound for treatment of *Trichomonas vaginalis* infection

MARIANNE SKÖLD, HÅKAN GNARPE, AND LARS HILLSTRÖM

From the Department of Dermatology and Venereology and the Department of Medical Microbiology, District General Hospital, Gävle, Sweden

SUMMARY A new anti-protozoal compound, ornidazole, a derivative of nitroimidazole, was given in a single 2 g dose to 20 women with *Trichomonas vaginalis* infection. All the women were cured, but they suffered some side-effects. Plasma levels of ornidazole reached a peak five to eight times higher than minimum inhibitory concentrations and exceeded this level for at least 36 hours. It is therefore possible that a smaller dose might have had an adequate trichomonicidal effect and fewer side-effects. Further studies are in progress.

Introduction

Since its introduction in 1959, metronidazole, a nitroimidazole derivative, has been the drug of choice for treatment of *Trichomonas vaginalis* infections. It has usually been given in multiple doses and failures have generally been due to incomplete treatment, either of the patients and/or the partners.

Ornidazole is a recently synthesised nitroimidazole derivative (Fig. 1) and the first clinical trials have shown excellent results—that is, a 100% cure rate with different dosages and even with a single 2 g dose (Warnnissorn, 1974).

Fig. 1

Ornidazole 1-(3-chloro-2-hydroxy-propyl)-2-methyl-5-nitroimidazole

Metronidazole 1-(2-hydroxietyl)-2-methyl-5-nitroimidazole

To collect more data on ornidazole we made the following investigations:

- a laboratory examination of minimum inhibitory concentrations of ornidazole on *T. vaginalis* strains isolated from these patients
- a comparison of minimum inhibitory concentrations of ornidazole with those of metronidazole, nitrimidazole, and tinidazole on *T. vaginalis* strains isolated from clinical material
- a determination of plasma levels of unchanged ornidazole after oral administration of a 2 g dose.

Material and methods

EFFECT AND TOLERANCE STUDY The clinical study was performed on 20 women out-patients aged between 15 and 36 years, with *T. vaginalis* infection. Subjective symptoms had been present for between two weeks and three years, except in eight who had no symptoms. The patients were selected because they were otherwise healthy, not pregnant, and were willing to return for further examination.

Ten of the patients had been treated with ampicillin for gonococcal infections at least three days before the study; seven women used contraceptive pills. No other medication was used. The patients were instructed to take 2 g of ornidazole just before going to bed (one of the side-effects noted in previous trials had been somnolence, Warnnissorn, 1974). This dose corresponded to 24 to 40 mg/kg body weight.

To prevent re-infection, partners were treated in...
the same way as the patients, but were not included in the study.

The patients were examined just before treatment and then five days and one month after they had been treated. The following procedures were performed on each occasion:

- Subjective symptoms—such as, itching, smarting pain and/or increased discharge—were recorded.
- Objective signs were noted. Of these, increased redness of the vaginal mucosa with or without increased discharge was considered to be the main criterion of vaginal infection.
- Specimens were collected for T. vaginalis culture (see laboratory diagnosis). This procedure would also reveal the presence of Candida albicans.
- Smears from the cervix were stained with methylene blue and examined microscopically for polymorphonuclear leucocytes (PMN) and intracellular diplococci. An average of 10 or more PMN seen in more than three high-power fields (×1000) were recorded as 'leucocytic reaction' (Wallin et al., 1974).
- Haemoglobin concentration, total and differential leucocyte count, thrombocytes, serum aspartate aminotransferase, serum alanine aminotransferase, alkaline phosphatase, and serum creatinine levels were determined using standard techniques.

LABORATORY DIAGNOSIS

Specimens were taken from the cervix with a sterile cotton swab which was immediately inserted into a modified Stuart's transport medium (Securline, MH 102, Cameco, Enebyberg, Sweden) and then sent to the bacteriological laboratory where specimens were inoculated into Diamond's medium and incubated at a temperature of 37°C. Wet preparations were examined daily by dark-field illumination. If no growth had appeared within one week, specimens were discarded as negative. According to Wallin et al. (1974), this is a better method than direct microscopic examination.

DETERMINATION OF MINIMUM INHIBITORY CONCENTRATION

Positive cultures were re-inoculated into fresh, prewarmed Diamond's medium which was inoculated overnight. The cultures were then diluted 1 in 10 in Diamond's medium and 0·10 ml volumes of this suspension were inoculated into a series of 5 ml volumes of Diamond's medium containing concentrations of ornidazole decreasing in two-step dilutions from 20 µg/ml to 0·08 µg/ml. Altogether 18 of the trichomonas strains isolated, and an additional 13 strains from other patients not in the study, were treated in this way. Minimum inhibitory concentration values for nimorazole (Naxogin®), metronidazole (Flagyl®, Elyzol®) and tinidazole (Fasigyn®) were also estimated using the 13 strains.

The influence of these drugs on the normal serum bactericidal effect was determined according to Forsgren and Gnarpe (1973). Serum specimens were obtained from five healthy women. The respective drugs were added to the serum specimens in two different concentrations, 40 and 10 µg/ml. The same strain (Escherichia coli Tr 1) as in earlier studies was again used.

PHARMACO-KINETIC STUDY

Five healthy female volunteers, aged between 24 and 45 years, were given 2 g ornidazole (corresponding to 28–39 mg/kg body weight) after a light breakfast without fat. Serial samples of 10 ml of blood were taken before and 2–72 hours after administration. Plasma was separated within one hour, immediately frozen and sent to Basel for analysis of unchanged ornidazole in plasma by thin-layer chromatography (Hezel, 1973).

RESULTS

The results of the clinical study are shown in Table 1. All 20 women attended the first follow-up, and 19 of these returned a month later. All cultures were negative after treatment although one of the patients still had a discharge. Of the eight symptomless patients at the beginning of the study, two noticed reduction of their usual discharge after treatment.

Table 1 Results before and after treatment of T. vaginalis infection with ornidazole in a single dose of 2 g. Figures represent number of patients

<table>
<thead>
<tr>
<th></th>
<th>Before treatment</th>
<th>5–8 days</th>
<th>One month</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n = 20)</td>
<td>(n = 20*)</td>
<td>(n = 19*)</td>
</tr>
<tr>
<td>Positive T. vaginalis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>culture</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Objective signs</td>
<td>10</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Subjective symptoms</td>
<td>12</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

*No clinical evaluation of one patient because of menstruation
†One patient did not attend the last follow-up

Eight patients complained of side-effects at the first follow-up visit, Table 2. These were not related to dose/kg body weight. Sixteen patients had leucocytic reaction before treatment and this was still present in 14 of them at the last visit. (This particular examination was inadvertently omitted on the other two patients.)
Number of strains inhibited

![Fig. 2: Minimum inhibitory concentrations of ornidazole for 31 strains of T. vaginalis.](image)

![Fig. 3: Minimum inhibitory concentration values of ornidazole, tinidazole, metronidazole, and nitrimidazine for 13 strains of T. vaginalis.](image)

No intracellular diplococci could be demonstrated and *C. albicans* was not isolated from any culture. Haematological and biochemical parameters before and after treatment showed no change that could be related to the treatment. The minimum inhibitory concentrations of ornidazole are shown in Fig. 2. Two isolates were inhibited by 10 μg/ml only; 24 were inhibited by 0.63 μg/ml. Four strains were inhibited by 0.08 μg/ml. The minimum inhibitory concentration values of ornidazole, tinidazole, metronidazole, and nitrimidazine for the 13 *T. vaginalis* strains are shown in Fig. 3. All isolates were inhibited by 5.0 μg/ml of each drug. Nine strains were inhibited by 0.63 μg/ml of ornidazole, which is about the same result as for nitrimidazine, tinidazole, and metronidazole.

The influence of the four investigated drugs on the normal serum bactericidal effect is shown in Fig. 4 for one individual. As can be seen neither 10 nor 40 μg/ml of any drug reduced the serum bactericidal...
Ornidazole: A new antiprotozoal compound for treatment of Trichomonas vaginalis infection

Figure 4 Influence of ornidazole, tinidazole, metronidazole and nitrimidazine on the normal serum bactericidal effect.

Fig. 4 Influence of ornidazole, tinidazole, metronidazole and nitrimidazine on the normal serum bactericidal effect.

Discussion

Judged clinically and by the negative cultures of T. vaginalis a single 2 g dose of ornidazole was successful in curing infection in all 20 patients treated. Nevertheless leucocytic reaction persisted in 14 out of 16 patients who had showed this feature before treatment.

Wallin (1974) suggested that leucocytic reaction of the cervical smear was related to infections caused by Neisseria gonorrhoeae and T. vaginalis. Our impression is, however, that this is a very unspecific reaction probably also indicating other pathogenic agents—for example, those causing post-gonococcal urethritis and non-gonococcal urethritis. It may also be a physiological finding in many women.

Eight women complained of side-effects, fatigue and dizziness being the most common. Since the peak of plasma levels of ornidazole was found to be between five and eight times greater than the minimum inhibitory concentration for trichomonads...
and these levels were still high 36 hours after ingestion, it may be possible to give a smaller dose of ornidazole with a maintained trichomonidal effect but fewer side-effects. Further studies are in progress.

In our study the minimum inhibitory concentration value of ornidazole does not diverge much from that of other nitroimidazole derivatives on the 13 strains examined.

The clinical results of this study compare favourably with other nitroimidazole derivatives investigated, also given in a single dose of 2 g. For example, Csonka (1971) found a success rate of 94% using metronidazole although of the same compound, while Woodcock (1972) obtained only 85%. Rösemann and Vaughan (1973) and Wallin and Forsgren (1974) using tinidazole obtained cure rates of 90% (31 patients) and 96% (47 patients) respectively. With ornidazole Warnnissorn (1974) achieved 100% cure (36 patients), the same as in our series.

Thus, in conclusion ornidazole appears to have great promise as a trichomonidal drug. However, more clinical studies are necessary, especially with regard to lessening the side-effects.

References

Ornidazole: a new antiprotozoal compound for treatment of Trichomonas vaginalis infection.
M Sköld, H Gnarpe and L Hillström

Br J Vener Dis 1977 53: 44-48
doi: 10.1136/sti.53.1.44

Updated information and services can be found at:
http://sti.bmj.com/content/53/1/44

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/