Chlamydial genital infection in Ibadan, Nigeria
A seroepidemiological survey

S DAROUGAR,* T FORSEY,* A O OSOBA,† R J DINES,* B ADELUSI,‡ AND G O COKER†

From the *Subdepartment of Virology, Institute of Ophthalmology, London; and the Departments of †Medical Microbiology and ‡Obstetrics and Gynaecology, University College Hospital, Ibadan, Nigeria

SUMMARY Sera from patients attending a sexually transmitted diseases (STD) clinic, a family planning clinic, and an antenatal clinic in Ibadan, Nigeria, as well as from male blood donors from the same area were tested for the presence of type specific antichlamydial antibodies using a modified micro-immunofluorescence test.

Among men and women attending the STD clinic the exposure rates to Chlamydia trachomatis serotypes D to K (genital pathogens) were 18.7% and 26.7% respectively. Antibody titres suggesting active disease in these men and women were found in 11.8% and 22.7% respectively. The highest rate of exposure (35%) was among women attending the family planning clinic; of these women 25% had antibody suggesting active disease. Titres of IgG antibody in this study were similar to those found among men and women with chlamydial genital infections in the United Kingdom. Antibodies to serotypes D to K were also detected in 10.3% of women attending an antenatal clinic and in 9.9% of male blood donors. The prevalence of antibodies to C trachomatis serotypes A to C and lymphogranuloma venereum serotypes was low.

These results suggest that the prevalence of chlamydial genital infections in Ibadan, both among STD patients and especially among those individuals not seeking treatment (family planning and antenatal clinic patients), is high. Since serious sequelae can follow chlamydial genital infections it is imperative to carry out further investigations in this area.

Introduction

In the developed countries of the West, the prevalence of non-gonococcal genital infections (NGGI) is higher than that of gonococcal genital infection. Although no accurate figures are available for most of the developing countries it has been estimated that NGGI are as prevalent in these areas as in the West. Studies have shown that in developed countries Chlamydia trachomatis is responsible for up to 68% of cases of non-gonococcal urethritis in men and has been isolated from the cervix of up to 31% of women attending sexually transmitted diseases (STD) clinics. In this study we determined the prevalence of chlamydial genital infections in various groups in Ibadan, Nigeria, by detecting type-specific antichlamydial antibodies using a modified micro-immunofluorescence (micro-IF) test.

Patients and methods

Included in this study were: 187 men and 75 women who attended consecutively the sexually transmitted diseases (STD) clinic, Ibadan; 160 women who attended consecutively a family planning clinic, 155 women attending consecutively an antenatal clinic for routine advice and examination; and 101 unselected male blood donors from the same town. Patients in the last three groups had no symptoms of overt genital disease.

Blood was taken from all individuals by venepuncture; the serum was separated and stored at −20°C. Sera were shipped to the laboratory in London in the frozen state and stored at −20°C until tested.

Address for reprints: Professor S Darougar, Subdepartment of Virology, Institute of Ophthalmology, Judd Street, London WC1H 9QS

Accepted for publication 28 June 1982
Chlamydial genital infection in Ibadan, Nigeria

Sera were tested for the presence of type-specific antichlamydial antibodies using pools of purified chlamydial antigens in a modified micro-IF test. Sera were examined at a starting dilution of 1/16 for antichlamydial IgG and of 1/8 for antichlamydial IgM.

Results

The distribution of antibodies to chlamydial serotypes in the population examined are shown in Table I. Antibodies to C trachomatis serotypes D to K (genital pathogens) were found in 35 of 187 (18.7%) men and in 20 of 75 (26.7%) women attending the STD clinic. In women attending the family planning and antenatal clinics antibodies to serotypes D to K were found in 56 of 160 (35.0%) and 16 of 155 (10.3%) respectively. Among 101 male blood donors these antibodies were detected in 10 (9.9%).

The prevalence of IgG and IgM antibodies specific for C trachomatis serotypes D to K is shown in Table II. Antibodies suggesting active chlamydial disease were found in 22 (11.8%) men and 17 (22.7%) women attending the STD clinic, in 40 (25%) and six (3.9%) women attending family planning and antenatal clinics respectively, and in five (5%) male blood donors. The distribution of titres of IgG antibody to serotypes D to K is shown in Table III. Antibodies to C trachomatis serotypes A to C (trachoma types) were found in a total of 22 of 678 (3.2%) sera from all groups, and antibodies to lymphogranuloma venereum (LGV) types were detected in only two (0.3%) (both from men). Antibodies against Chlamydia psittaci serotypes were not detected.

Discussion

The patients attending the STD clinic, Ibadan, presented with a variety of genital diseases. The diagnoses made in these patients included syphilis, gonorrhoea, non-gonococcal urethritis, cervicitis, urethritis, cervicitis, and various other conditions.

Table I: Distribution of antibodies to chlamydial serotypes in Ibadan, Nigeria

<table>
<thead>
<tr>
<th>Patient group (sex)</th>
<th>No of patients</th>
<th>Total No (%) with antibodies</th>
<th>No (%) with antibodies to C trachomatis serotypes*</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD clinic (M)</td>
<td>187</td>
<td>40 (21.4)</td>
<td>A-C: 4 (2.1), D-K: 35 (18.7), LGV: 1 (0.5)</td>
</tr>
<tr>
<td>STD clinic (F)</td>
<td>75</td>
<td>21 (28.0)</td>
<td>A-C: 1 (1.3), D-K: 20 (26.7), LGV: 0</td>
</tr>
<tr>
<td>Family planning clinic (F)</td>
<td>160</td>
<td>64 (40.0)</td>
<td>A-C: 8 (5.0), D-K: 56 (35.0), LGV: 0</td>
</tr>
<tr>
<td>Antenatal clinic (F)</td>
<td>155</td>
<td>18 (11.6)</td>
<td>A-C: 2 (1.3), D-K: 16 (10.3), LGV: 0</td>
</tr>
<tr>
<td>Blood donors (M)</td>
<td>101</td>
<td>18 (17.8)</td>
<td>A-C: 7 (6.9), D-K: 10 (9.9), LGV: 1 (1.0)</td>
</tr>
<tr>
<td>Total</td>
<td>678</td>
<td>161 (23.8)</td>
<td>A-C: 22 (3.2), D-K: 137 (20.2), LGV: 2 (0.3)</td>
</tr>
</tbody>
</table>

*All sera negative for C psittaci

Table II: Prevalence of antibodies to C trachomatis serotypes D to K in Ibadan, Nigeria

<table>
<thead>
<tr>
<th>Patient group (sex)</th>
<th>No</th>
<th>No (%) with IgG</th>
<th>No (%) with IgM</th>
<th>No (%) with antibodies suggesting active infection*</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD clinic (M)</td>
<td>187</td>
<td>35 (18.7)</td>
<td>7 (3.7)</td>
<td>22 (11.8)</td>
</tr>
<tr>
<td>STD clinic (F)</td>
<td>75</td>
<td>20 (26.7)</td>
<td>6 (8.0)</td>
<td>17 (22.7)</td>
</tr>
<tr>
<td>Family planning clinic (F)</td>
<td>160</td>
<td>56 (35.0)</td>
<td>24 (15.0)</td>
<td>40 (25.0)</td>
</tr>
<tr>
<td>Antenatal clinic (F)</td>
<td>155</td>
<td>13 (8.4)</td>
<td>3 (1.9)</td>
<td>6 (3.9)</td>
</tr>
<tr>
<td>Blood donors (M)</td>
<td>101</td>
<td>8 (7.9)</td>
<td>2 (2.0)</td>
<td>5 (5.0)</td>
</tr>
<tr>
<td>Total</td>
<td>678</td>
<td>132 (19.5)</td>
<td>42 (6.2)</td>
<td>90 (13.3)</td>
</tr>
</tbody>
</table>

*Men IgG ≥32 or IgM
Women IgG ≥64 or IgM

Table III: Distribution of titres of IgG to C trachomatis serotypes D to K in Ibadan, Nigeria

<table>
<thead>
<tr>
<th>Titres</th>
<th>Patient group (sex)</th>
<th>No</th>
<th><16</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>>256</th>
<th>GMT*</th>
</tr>
</thead>
<tbody>
<tr>
<td>STD clinic (M)</td>
<td>187</td>
<td>152</td>
<td>17</td>
<td>2</td>
<td>10</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1/37</td>
<td></td>
</tr>
<tr>
<td>STD clinic (F)</td>
<td>75</td>
<td>55</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>1/37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family planning clinic (F)</td>
<td>160</td>
<td>104</td>
<td>8</td>
<td>15</td>
<td>12</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>1/72</td>
<td></td>
</tr>
<tr>
<td>Antenatal clinic (F)</td>
<td>155</td>
<td>142</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1/29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood donors (M)</td>
<td>101</td>
<td>93</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/21</td>
<td></td>
</tr>
</tbody>
</table>

*Geometric mean titre of positive sera
epididymitis, vaginitis, candidosis, trichomoniasis, and genital herpes. Some patients presented with vague genital symptoms and others as contacts of patients with STDs. Among 187 of these men and 75 of these women antibodies to chlamydial genital pathogens (C trachomatis serotypes D to K) were found in 18.7% and 26.7% respectively. To the best of our knowledge comparable findings are not available from similar groups elsewhere in the world. Among a group of 146 men, however, with either post-gonococcal or non-gonococcal urethritis in the United Kingdom antibodies to serotypes D to K were found in 25% using the same micro-IF test. Among 272 women attending a VD clinic in London with various STDs, these antibodies were detected by the micro-IF test in 43%. Therefore, considering the nature of the patient groups studied the prevalence of chlamydial genital infections in the STD clinic in Ibadan is not dissimilar to that found in the United Kingdom. The titres of antichlamydial IgG in men (geometric mean titre (GMT) 1/37) and women (GMT 1/71) in Ibadan were also similar to those found in the United Kingdom among men with chlamydial urethritis and women with chlamydial cervicitis.

When serum IgG titres of >32 in men and >64 in women or the presence of antichlamydial IgM are considered to suggest active chlamydial infection, 11-8% of men and 22.7% of women from this clinic in Ibadan appeared to have active chlamydial genital infections at the time of examination. In a previous study from the same clinic, 26% of all patients had NGGI. Our results suggest that most of these infections may be due to chlamydiae and that women are the main reservoir of infection.

Perhaps the most striking finding of this study is that among 160 women attending a family clinic in Ibadan antibodies to C trachomatis serotypes D to K were detected in 35%. Of these 25% had antibody titres suggesting active infection. This prevalence is higher than would be expected in the United Kingdom or USA, where 3% and 11% of women attending family planning clinics had chlamydial genital infections. The titres of IgG among these women in Ibadan (GMT 1/72) were similar to those in the women attending the STD clinic and to those in the United Kingdom with chlamydial genital infections.

Of 155 women presenting for routine antenatal examinations antibodies to serotypes D to K were found in the sera of 10.3%. Although the IgG was generally of a low titre (GMT 1/29), 3.9% of these women had values suggesting active infection. Similarly, among 101 male blood donors, 9.9% had these antibodies (GMT 1/21) and 5% had evidence of active infection. By comparison, using the same serological test in the United Kingdom we found IgG antibody to C trachomatis serotypes D to K in only 3% of female and less than 1% of male blood donors. Antichlamydial IgM could not be detected in sera from these blood donors in the UK.

Only two patients, both men, had antibodies to LGV serotypes, indicating a very low prevalence of exposure (less than 1%) in this population. This finding agrees with a previous study in Nigeria, where among patients with STD the prevalence of LGV was also found to be low at 2.5%. Few patients (3%) in Ibadan had antibodies specific for C trachomatis serotypes A to C, the types commonly associated with hyperendemic trachoma.

In Nigeria tetracycline is widely available and commonly abused through self-medication for minor ailments. Although chlamydiae are sensitive to this antibiotic the seroreactivity to C trachomatis serotypes D to K was high among the patients studied. Our results from Ibadan suggest that chlamydial genital infections occur among patients attending an STD clinic with a prevalence similar to that found in developed countries. These infections are also prevalent in Ibadan among other groups, in which the disease was mild or asymptomatic. Studies have shown that such conditions as epididymitis, pelvic inflammatory disease, and perihepatitis can result as sequelae of chlamydial genital infections. In Africa pelvic inflammatory disease and infertility pose a major problem; it is therefore imperative that the role of chlamydiae in these diseases receives further investigation.

This study was supported in part by the World Health Organisation, Ibadan.

References
Chlamydial genital infection in Ibadan, Nigeria

Chlamydial genital infection in Ibadan, Nigeria. A seroepidemiological survey.

S Darougar, T Forsey, A O Osoba, R J Dines, B Adelusi and G O Coker

Br J Vener Dis 1982 58: 366-369
doi: 10.1136/sti.58.6.366

Updated information and services can be found at:
http://sti.bmj.com/content/58/6/366

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/