Effect of syphilitic rabbit sera taken at different periods after infection on treponemal motility, treponemal attachment to mammalian cells in vitro, and treponemal infection in rabbits

G H W WONG,* B STEINER,† AND S GRAVES†
From the *Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, and the †Department of Microbiology, La Trobe University, Bundoora, Victoria, Australia

SUMMARY The time course of antibody synthesis during syphilis was studied in experimentally infected rabbits. A rapid antibody response was seen; the rabbits became positive in both the rapid plasma reagin (RPR) test and Treponema pallidum haemagglutination assay (TPHA) by nine days after infection. Treponemal immobilising antibodies were also seen as early as nine days after infection. Antibody inhibition of treponemal attachment to baby rabbit genital organ (BRGO) cells in culture occurred with immune sera taken 30 days after infection but not earlier. When T pallidum was mixed with immune syphilitic rabbit sera taken at different stages of the infection and used to infect normal rabbits the rabbits became partially resistant to T pallidum only when the treponemes were mixed with sera taken at least 30 days after syphilitic infection. This appearance correlated well with the development of antibodies which blocked attachment of T pallidum to host cells. These antibodies may be involved in the resistance to reinfection which develops in syphilis as the disease progresses.

Introduction

Syphilis occurs both as an acute and a chronic infection. Large quantities of antibodies are formed and some may be involved in opsonisation¹ or be directly bacteriocidal for Treponema pallidum.² Several attempts have been made at passive immunisation using immune serum and resulting in partial protection in the recipient rabbits.³ ⁴ Antibodies do interfere with the attachment of T pallidum to mammalian cells⁵ ⁶ and these factor(s) may be important in eventually producing immunity to the bacterium. Fitzgerald and coworkers have suggested that T pallidum may attach to tissue cells through a mucopolysaccharidase and that antibodies against this enzyme may prevent attachment to tissue cells.⁷ They found that antibodies which reacted with commercial hyaluronidase were present in syphilitic sera.⁸ ⁹ Baseman and Hayes¹⁰ showed that immune sera contained antibodies against the major surface proteins of T pallidum, presumably including those proteins concerned in treponemal attachment to mammalian cells.

Although the reports quoted above have shown the importance of humoral immunity in syphilis, the treponemes are not eliminated from primary or secondary lesions until a cellular infiltration occurs, mainly of T lymphocytes.¹¹ Numerous non-specific antibodies are formed during the course of syphilis which may have nothing to do with immunity.¹² Some of these may be autoantibodies. For example, antihem antibodies have been reported in experimental syphilis.¹³ In this study we report the effect of sera collected during syphilitic infection on the attachment of treponemes to cultured mammalian cells in vitro and on infection in vivo. Our aim was to determine when humoral immunity begins and whether antibodies produced early in infection may be involved in enhancement of the disease process by stimulating treponemal attachment to host cells.

Address for reprints: Dr G H W Wong, Walter and Eliza Hall Institute of Medical Research, Post Office, Royal Melbourne Hospital, Victoria 3050, Australia
Accepted for publication 7 January 1983
Materials and methods

SOURCE OF T PALLIDUM

T pallidum (Nichols) was propagated in adult male rabbits as described and the treponemes extracted anaerobically. Eagle's minimal essential medium (EMEM) with 10% fetal calf serum was used in all experiments, as it had previously been shown to be superior to three other tissue culture media.

RABBIT SERA

Three rabbits were injected with approximately 5×10^7 viable T pallidum per testis. The rabbits were bled before infection to provide normal rabbit serum (NRS) and periodically thereafter (from 5 to 150 days) to provide syphilitic rabbit sera (SRS). The control rabbit was injected with 5×10^7 heat-killed T pallidum per testis and bled similarly. Sera were stored separately at $-70^\circ C$ until all were ready for experimental use. They were then sterilised by filtration (Millipore 0.45 μm).

TISSUE CULTURE CELLS

We had previously examined various cell lines for attachment of T pallidum and the baby rabbit genital organ (BRGO) cell line was superior to others tested. Thus BRGO cells were used for all experiments. This primary cell line was isolated in our laboratory and maintained in EMEM with 10% FCS and 10 mmol/l HEPES without antibiotics at 37°C. The medium was changed every three days and the confluent monolayers subcultured using phosphate buffered saline containing 0.025% trypsin (Sigma) and 0.001% ethylenediamine tetra-acetic acid (EDTA) (Sigma) to remove cells attached to the tissue culture flask.

SEROLOGICAL TESTS

The rapid plasma reagin (RPR) test (Hynson, Wescott and Dunning, Baltimore) and the T pallidum haemagglutination (TPHA) test (Fujizoki Pharmaceutical Co Ltd, Shinjuku-ku, Tokyo) were performed according to the manufacturer's direction.

The presence of treponemal immobilising antibodies in the sera was determined by mixing freshly harvested motile treponemes (7×10^6/ml) with individual SRS at a final serum concentration of 20% and incubating them microaerophilically at 35°C for 24 hours. Examination by dark field microscopy of 100 treponemes at random enabled a percentage motility to be determined for the culture. Since reducing agents interfere with the activity of antibodies in sera they were excluded from the medium.

ATTACHMENT OF T PALLIDUM TO BRGO CELLS

T pallidum (2×10^7/ml) in serum free medium were mixed with individual SRS for between 30 and 60 minutes at a final serum concentration of 20%. The mixtures were then coincubated with BRGO cells in tissue culture for one hour. Coverslips were then removed from the Leighton tubes and unattached treponemes washed off with medium. The number of treponemes attached per BRGO cell was determined by observing between 30 and 60 BRGO cells at random from duplicate or triplicate tissue culture tubes by dark field microscopy.

SYPHILITIC RABBIT SERUM (SRS) MODIFICATION OF T PALLIDUM VIRULENCE

Different concentrations of T pallidum (10^3 to 10^7) were mixed with individual SRS for between 30 and 60 minutes at a final serum concentration of 50%. The remaining virulence of the T pallidum was determined by intradermal inoculation of 0.1 ml of culture into six sites on the shaved backs of each of two rabbits as described. The course of the infection was followed and the latent period determined as the time between inoculation and the appearance of induration at the inoculation site. There is an inverse relationship between the latent period of infection and the number of virulent T pallidum remaining in the sample inoculated into the rabbit.

Results

ANTIBODIES IN SYPHILITIC RABBIT SERA (SRS) AND THE EFFECT OF SRS ON TREPONEMAL MOTILITY IN CELL FREE MEDIUM

Sera taken from nine days after intratesticular infection (5×10^7 treponemes/testis) showed positive results in both the RPR and TPHA tests (fig 1). Sera taken later than 40 days after infection showed the highest titres in both tests.

Immobilising antibodies were present in sera only nine days after infection and reached maximum concentrations by 20 days after infection (fig 2). Thus the rabbits mounted a very rapid humoral immune response against T pallidum in the form of immobilising antibodies. The titre remained high until the last sample was taken 150 days after infection, indicating a long lasting antibody response.

EFFECT OF SRS ON THE ATTACHMENT OF TREPONEMES TO INTACT BRGO CELLS UNDER MICROAEROPHILIC CONDITIONS

Since inhibition of attachment to mammalian cells has been suggested as a possible important role of antibody in syphilis the effect of individual and
sequential syphilitic rabbit sera on attachment of treponemes to BRGO cells was determined.

The data showed that there was no significant enhancement of treponemal attachment to BRGO cells associated with early SRS when compared with normal serum (fig 3). Sera taken 30 days after infection, however, greatly inhibited treponemal attachment to BRGO cells by up to 70% compared with normal serum. Since the motility of the treponemes at the time of measurement was approximately 80–90% the inability of treponemes to attach to BRGO cells was probably not due to a lack of treponemal motility. SRS taken between 30 and 150 days after infection gave similar inhibition, indicating that the factor(s) (presumably antibody) which blocked treponemal attachment to the host cells was continually synthesised.

EFFECT OF SRS ON TREPONEIMAL INFECTION IN VIVO

An attempt was made to correlate the two different antibody responses (antibodies inhibiting treponemal motility and antibodies inhibiting treponemal attachment to the host cells) to actual resistance to infection in the rabbits.

When 10^5 or 10^6 treponemes (prereacted with SRS) were inoculated into the rabbits there were no significant differences in the latent periods of infection (fig 4). A significant difference was observed, however, when 10^3, 10^4, or 10^5 treponemes (prereacted with SRS) were inoculated into the rabbits, provided that the sera were taken no earlier than 30 days after infection. The sera reduced the virulence of the *T. pallidum* inoculum as shown by a substantial lengthening of the latent period of infection (fig 4).

Discussion

These results indicate that antibody present in serum from rabbits infected with *T. pallidum* was probably contributing appreciably to the onset of immunity
Effect of syphilitic rabbit sera taken at different periods after infection

How T pallidum circumvents this blocking effect of antibody to establish secondary lesions is unknown.

This work was supported by grants from the Australian National Health and Medical Research Council (NH&MRC), the Utah Foundation, the Heiser Program, the Australian-British Society, and Monash University, from whom funds are gratefully acknowledged.

We thank Mr Dick Strugnell for his valuable assistance, and Professor S Faine for the facilities of the department of microbiology, Monash University.

References

Effect of syphilitic rabbit sera taken at different periods after infection on treponemal motility, treponemal attachment to mammalian cells in vitro, and treponemal infection in rabbits.

G H Wong, B Steiner and S Graves

Br J Vener Dis 1983 59: 220-224
doi: 10.1136/sti.59.4.220

Updated information and services can be found at:
http://sti.bmj.com/content/59/4/220

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Errata An erratum has been published regarding this article. Please see next page or:
/content/60/4/278.2.full.pdf

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/
Book review

In 1972 the Montreal Health Press published a "VD Handbook" which was widely distributed throughout North America. Changing social mores as well as advances in the microbiology of infection suggested the need for a replacement publication. In "A book about sexually transmitted diseases" the Montreal Health Press has attempted to provide an up to date and wide ranging discussion of the sexually transmitted diseases (STDs), covering society's attitudes to sex and sexuality, as well as the microbiology and management of individual infections. It has assumed a certain amount of basic knowledge among potential readers, but appears to have occasional doubts about when to simplify medical terminology—for instance, to provide a specimen of urine a woman should "urinate" but to try to prevent urinary tract infection she should "pee frequently and often". The resulting publication is a bit like the curate's egg. It is not helped by its appearance. The magazine format, with pages of typescript relieved by frequent and irrelevant black and white photographs, gives the impression that the finances available for this project were strictly limited.

Despite the unpromising appearance, the first few chapters are really rather good. A check list of common symptoms and their possible causes is followed by sections on STDs and sexuality, understanding infections, prevention and self care, dealing with an STD, and basic anatomy. These are all clear and well written and give, along with accurate information, practical and detailed advice. Some of this is applicable only to North America, but most of it would be useful on both sides of the Atlantic. The author deals with basic principles of infection and infectious diseases, and discusses what steps people can usefully take to minimise risks, including changing sexual behaviour. The chapter on "dealing with an STD" describes the medical examination of the patient in some detail with the help of drawings and diagrams. Young people often worry unnecessarily about what will happen to them during the examination, and information given like this can only be reassuring. Occasional lapses into modern sociopolitical jargon in no way diminish the value of these sections.

The success of the first part of the book serves to highlight the failure of the second, in which the author describes the diagnosis and management of individual infections. Some sections, such as the one on gonorrhoea, seem old fashioned and minatory and dwell heavily on the complications of untreated infection. Some confusion arises over diagnostic procedures, such as when the author implies that laparoscopy may be used routinely in the diagnosis of gonorrhoea. There are also numerous microbiological errors, most noticeable in the chapter on chlamydial infection. Chlamydia trachomatis is not an intermediate organism, the clinical appearance of the cervix is not a good indicator of chlamydial infection, and chlamydia should not be assumed to be the cause of urethritis if Gram negative diplococci are not present in a urethral smear.

The other sexually transmitted diseases are dealt with rather more accurately, although treatment regimens of course reflect North American practice. Patients presenting with genital symptoms may have conditions other than STDs; the inclusion of information about vaginitis, prostatitis, and urinary tract infection is helpful.

This small publication contains a great deal of information about sexually transmitted diseases and their implications for the individual and for society. Many medical textbooks contain rather less. Greater medical accuracy would have made "A book about sexually transmitted diseases" even more useful.

J M Hunter

Corrections

One of the authors of the paper on syphilis, hepatitis A, hepatitis B, and cytomegalovirus infection in homosexual men in Antwerp (1984;60:48-51), Dr C-H Coester, undertook the work at the Institut für Medizinische Mikrobiologie, Freie Universität Berlin, Berlin, West Germany as well as at the Institute of Tropical Medicine, Antwerp.

Work for the paper on the effect of syphilitic rabbit serum on treponemal motility, attachment to mammalian cells in vitro, and infection in rabbits (1983;59:220-4) was undertaken at the Department of Microbiology, Monash University Medical School, Alfred Hospital, Prahan, Victoria, Australia and not at the two institutions cited.