Survival of *Trichomonas vaginalis* in human semen

J J DALY, *J K SHERMAN,* †**L GREEN,** †**T L HOSTETLER**†

*From the Departments of *Microbiology and Immunology, and †Anatomy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.*

SUMMARY Although exposure of *Trichomonas vaginalis* to human semen is of short duration, any effect that this fluid may have on the urogenital protozoon could affect its transmission, especially if only few trichomonads are present. Small numbers of parasites (about 2500/ml semen) incubated in semen from different donors at 37°C, were found to survive or grow for up to 12 hours in all samples and for up to 24 hours in most. Survival and growth of *T vaginalis* in semen most resembled that found in Diamond’s trypticase, yeast extract, and maltose (TYM) medium without serum supplement, rather than in complete TYM medium and phosphate buffered saline. Contrary to previous reports, semen did not inhibit the survival of *T vaginalis*, and the presence of trichomonads did not alter motility or numbers of spermatozoa up to 24 hours. The data suggest that semen provides a favourable milieu for transmitting trichomonads.

The role of men in transmitting *Trichomonas vaginalis* to women is not understood well. Male sexual consorts are generally accepted as being the primary sources of infection in women, but the extent to which these parasites exist in men is not clear. Three possibilities are usually suggested; (1) that *T vaginalis* is only transient in men, (2) that the organism usually exists in such small numbers that it is difficult to detect and the host is symptomless, and (3) that in a few men certain symptomatology can occur, for reasons not yet clear, accompanied by a detectable number of parasites. Whatever the case, the vehicle for transmission from a man to an uninfected woman must be semen. For the trichomonads in semen to infect successfully they must remain alive in this transfer milieu long enough to establish themselves in a new host environment. Trichomonads have only a short exposure time to semen itself, from ejaculation to cervical transfer. After ejaculation, however, semen forms part of the material in which the parasites will begin to establish themselves in the vaginal vault. Inhibitory activity by semen could reduce the infectivity of trichomonads, especially if only few are present. The effects of semen could also play an important part in the survival of *T vaginalis* in fresh or frozen (cryopreserved) semen used for artificial insemination.

This study set out to assess the effect of semen on the ability of *T vaginalis* to survive, and thus whether semen contributes to or inhibits successful transmission of trichomonads.

Patients, materials, and methods

CULTURES

Isolates of *T vaginalis* used in these experiments were obtained from patients at the University Hospital, Little Rock, Organisms were maintained in Diamond’s trypticase, yeast extract, and maltose (TYM) medium supplemented with 5% inactivated human serum, incubated at 37°C, and subcultured every 48 hours.

HUMAN SEMEN

Human semen was obtained from donors selected through the University Semen Cryobank. All but one donor, who was 52, were in their 20s and were students. All semen samples were used fresh with no cryoprotectant added.

EFFECT OF HUMAN SEMEN ON SURVIVAL OF *T VAGINALIS*

Inoculation and incubation

Late log and early stationary phase cultures of *T vaginalis* were centrifuged and washed twice with phosphate buffered saline (PBS) at pH 7.2. Cells were resuspended in PBS, the suspension was adjusted to 40 to 100 trichomonads/μl PBS, and 10 μl suspension

Address for reprints: Dr J J Daly, Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, Arkansas, USA

Accepted for publication 14 November 1988
Survival of *Trichomonas vaginalis* in human semen

were added to 0.2 ml aliquots of semen in 2 ml volume test tubes. For anaerobic incubation, these tubes were placed unstoppered in Gas Pak jars and carbon dioxide, and hydrogen generators were employed; the jars were then closed and incubated at 37°C. For aerobic incubation, stoppered tubes were incubated directly in a 37°C incubator. In all experiments, tubes of inoculated semen were removed from incubation after 6, 12, and 24 hours, and the contents were gently stirred with a bacteriology incuating loop. Four samples of 10 µl each were removed and inoculated into modified TYM medium previously maintained as liquid at 40°C. The modified TYM medium used contained 0.45% Noble agar, 5% inactivated human serum, and antibiotics as described by Ivey.

Controls

Tubes containing 0.2 ml complete TYM medium were used as growth controls, TYM medium minus the serum additive as incomplete growth controls, and PBS as no growth controls. These tubes were also inoculated with 10 µl trichomonad suspension and were incubated and sampled in the same way as the inoculated semen.

Colonies counts

The colony count technique was used in these studies to assess population viability of trichomonads inoculated into semen and control media. This allowed the detection of small numbers of trichomonads in semen as well as the use of small aliquot volumes of individual semen specimens. Small inoculum sizes also approximated to the population densities in transient conditions and in low grade infections in men. Preparation of inoculated agar plates and colony count techniques followed the methods of Ivey, and Matthews and Daly. Inoculated liquefied TYM medium was poured into plastic petri dishes, allowed to harden, placed in Gas Pak jars containing carbon dioxide and hydrogen, and incubated for four to five days at 37°C. Incubated plates were then counted for the number of trichomonad colonies present. As different inoculum sizes were used in each experiment, the data were expressed as percentages above the initial inocula of 100%.

Effects of trichomonads on spermatozoa

Pairs of semen samples (semen with and semen without trichomonads) were compared by phase microscopy for spermatozoal motility and by haemocytometer counts for numbers of spermatozoa at 0, 6, 12, and 24 hours after incubation at 37°C.

Results

Populations of *T vaginalis* were found not only to survive in human semen at 37°C but also showed some growth. Five different semen specimens were examined comparing aerobic and anaerobic incubation using only the complete TYM as a control. Table 1 shows results of paired experiments on growth or survival of *T vaginalis* in semen or complete medium incubated under aerobic compared with anaerobic conditions. Growth or survival were poorer in semen and medium under aerobic conditions than under anaerobiosis. Four other semen samples were examined for survival or growth under anaerobic conditions only, and we used complete TYM medium, TYM without serum, and PBS as control media. Table 2 shows results of paired experiments using the three growth controls. Few organisms survived in PBS after incubation for six hours. Growth in semen was most closely comparable with that in incomplete TYM medium. Although the trend at 24 hours was towards greater growth in semen, the difference was not significant (310% vs 116%). As expected, growth was excellent in the complete medium, but the difference between it and in semen was evident only at 24 hours (820% vs 310%, p = 0.005). Combining the data from all nine paired semen samples incubated anaerobically, survival of *T vaginalis* at 24 hours ranged from 2% to 535% of the initial inoculum with a mean (SE) of 251 (70%).

No differences were found in the degree and quality of spermatozoal motility in the presence or absence of trichomonads. The means of double blind triplicate

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Survival or growth of Trichomonas vaginalis in human semen or trypticase, yeast extract, and maltose (TYM) medium under anaerobic (carbon dioxide and hydrogen) or aerobic conditions at 37°C. (Figures represent mean (SE) percent of organisms (relative to initial populations of 100%) in five experiments)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours</td>
<td>TYP medium</td>
</tr>
<tr>
<td>6</td>
<td>51 (63)</td>
</tr>
<tr>
<td>12</td>
<td>29 (49)</td>
</tr>
<tr>
<td>24</td>
<td>41 (59)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Survival of Trichomonas vaginalis in human semen, complete trypticase, yeast extract, and maltose (TYM) growth medium, incomplete medium (TYM minus serum), and phosphate buffered saline (PBS) incubated under anaerobic (carbon dioxide and hydrogen) conditions at 37°C. (Figures represent mean (SE) percent of organisms (relative to initial populations of 100%) in four experiments)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>6 hours</td>
</tr>
<tr>
<td>PBS</td>
<td>8 (16)</td>
</tr>
<tr>
<td>Incomplete TYM</td>
<td>141 (81)</td>
</tr>
<tr>
<td>Semen</td>
<td>195 (117)</td>
</tr>
<tr>
<td>Complete TYM</td>
<td>221 (127)</td>
</tr>
</tbody>
</table>
motility readings in aliquots of semen with v without
trichomonads were 51 v 52% initially, 44 v 43% after
6 hours, 22 v 21% after 12 hours, and 2 v 2% after
24 hours. The degree and quality of motility were
indistinguishable between media at the same observa-
tion periods, apart from heightened spermatozoal
agglutination initially in one sample with parasites.
Spermatozoal microscopy rarely showed motile tri-
chomonads initially (because only small numbers were
present), but they were easily found in the 24 hour
samples. Duplicate and mean measurements of the
total numbers or concentration (millions/ml) of
spermatozoa during incubation for 24 hours showed
no change. We found no evidence, therefore, for
phagocytosis of spermatoza by trichomonads in
incubated infected semen, in contrast to the spermato-
zoal phagocytosis by trichomonads reported for
vaginal secretions.7

Discussion

Published reports indicate that certain components
of seminal fluid may inhibit the survival of T vaginalis.
Canine and human prostatic fluids have been found to
inhibit trichomonal survival.8 9 This was related to the
presence of zinc in other experiments in which the
trichomonads were directly exposed to this ion.8 10
Previous investigators used phase microscopy to
detect viable trichomonads in microtitre plates, but
failed to find T vaginalis surviving in seminal fluid after
incubation for six hours at 30°C.5 In contrast to these
findings, we found excellent survival of T vaginalis in
semen from different donors after incubation for up to
24 hours at 37°C. The failure of other workers to find
viable T vaginalis in seminal fluid incubated for six
hours may have been due to the large size of their
initial inoculum (40 000 trichomonads/ml seminal
fluid) or the different incubation temperatures, or
both. In the study reported here the colony formation
technique allowed us to use a small inoculum (about
2500 cells/ml semen), which would more approximate
to populations of trichomonads seen in infected men.

As the data presented herein indicated that semen
acts as an incomplete medium, it follows that the
limiting factor(s) for growth would shorten the growth
curve considerably in the presence of a large inoculum.
Using colony counts as a measurement of viability, the
stationary phase of T vaginalis in growth medium has
been shown to be short and the death or decline phase
pronounced.11 The trichomonads in seminal fluid were
possibly too far into the death phase to remain viable
or to retain active motility. We are currently examining
the effect of different inoculum sizes on trichomonal
survival in semen.

A factor other than zinc may also be responsible for
the inability of trichomonads to thrive in the uro-
genital tracts of men.8 10 The work published here
suggests that one factor could be nutritional, as the
growth response indicated that semen was an incom-
plete medium for T vaginalis. Poor survival in prosta-
tic fluid may be due to the lack of carbohydrate in the
form of fructose, which is found in seminal fluid.12
Another possibility (yet to be tested) to explain the
results in the present report, is that the presence of
spermatozoa may enhance trichomonal survival. Our
finding of no effect by trichomonads on spermatozoal
motility does not support a report by Tuttle et al that
a striking decrease in motility occurs during incubation
with these parasites at 37°C for six hours.13 The high
concentration of trichomonads that they used (about
five times our "normal" numbers) were possibly the
causative variable.

In conclusion, the survival data in the present report
support the view that semen can serve as a good vehicle
for transmitting trichomonads.

We thank Joy Thompson for assistance in assessing sper-
matozoal motility and numbers.

References

2. Gardner WA, Culberson DE, Bennett BD. Trichomonas vaginalis
 Sex Transm Dis 1987;14:9–11.
4. Diamond LS. The establishment of various trichomonads of
5. Ivey MH. Growth characteristics of clones of Trichomonas
 vaginalis in solid medium. J Parasitol 1961;47:539–44.
6. Matthews RS, Daly JJ. Trichomonas gallinae: use of solid medium
to test survival under various environmental conditions. Exp
 Parasitol 1974;36:288–98.
7. Kolesoff, AP. Akusherstovo i Ginekologiya 1950; No 6:46. Cited in:
 Bernfeld WK. A note on Trichomonas vaginalis and seminal
8. Langley JG, Goldsmid JM, Davies N. Venereal trichomonia:
9. Krieger JN, Rein MF. Canine prostatic secretions kill Tri-
10. Krieger JN, Rein MF. Zinc sensitivity of Trichomonas vaginalis: in
 vitro studies and clinical implications. J Infect Dis 1982;
11. Daly JJ, Baker ML, Burton SB. The sensitivity of Trichomonas
 vaginalis and Trichomonas gallinae to ultraviolet radiation.
12. Eliasson R, Lindholmer C. Functions of male accessory genital
 organs. In: Hafez ESE, ed. Human semen and fertility regulation
 spermatozoal motility by Trichomonas vaginalis. J Urol 1977;
 118:1024–5.
Survival of Trichomonas vaginalis in human semen.

J J Daly, J K Sherman, L Green and T L Hostetler

doi: 10.1136/sti.65.2.106

Updated information and services can be found at:
http://sti.bmj.com/content/65/2/106

These include:

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/