A community-based seroprevalence survey of syphilis in black children

Sir,—Reliable estimates of the prevalence of syphilis are not readily available for most African countries, including South Africa. The available prevalence rates are almost exclusively confined to selected population groups such as attenders of antenatal and sexually transmitted diseases clinics.

Seroprevalence studies of syphilis in black antenatal clinic attenders have reported prevalence rates varying from 13% to 23% while prevalence rates varying from 30% to 35% have been reported in sexually transmitted diseases clinic attenders, a known high risk group. These data, notwithstanding their selection biases, indicate that syphilis is widespread in South Africa, particularly, amongst blacks. However, little is known about the prevalence of syphilis in black children. Van Niekerk et al previously reported a 2% prevalence of syphilis amongst schoolchildren in Bloemfontein but no data are available on black children in Natal. We undertook a community-based seroprevalence survey to determine the prevalence of exposure to syphilis in healthy black children in Umlazi, a black township south of Durban.

Four hundred and three children were randomly selected from a larger representative sample of 805 children which was obtained with minimal selection biases for a study conducted in 1985. Six of the selected children had insufficient sera and the remaining 397 sera were tested for syphilis antibodies of the IgG-class using the fluorescent treponemal antibody test (FTA-IgG).

Children who were positive by the FTA-IgG test were tested for the presence of IgM-class antibodies to syphilis using the fluorescent treponemal antibody test (FTA-IgM). Children who were positive by the FTA-IgM test were also tested for the presence of rheumatoid factor. All tests were performed in accordance with the manufacturers instructions.

The mean age was 6 years old and 4 months (range: newborn to 13 years) and 47-1% were males. The FTA-IgG test was positive in 14 children, in whom three were also positive by the FTA-IgM test. The three FTA-IgM test-positive children, aged 12 months, 18 months and 7 years and 9 months, were negative for rheumatoid factor. Seven of the children who were only FTA-IgG test positive were below the age of 6 months, suggesting that they are more likely to represent passively acquired maternal antibodies.

The overall prevalence of syphilis antibodies was 3.5% (95% confidence interval (CI) 1.7%-5.3%). Since seven of the 14 positive children are likely to represent maternal antibodies the prevalence of syphilis in healthy black children is 1.8% (CI: 0.5%–3.1%).

None of the children had clinical evidence of syphilis. Of the 3 FTA-IgM test positive children, it is likely that the two younger children represent congenitally acquired syphilis while the oldest child could have acquired syphilis venereally. The widespread use of antibiotics, especially penicillin, in the course of medical care could account for the lack of clinical manifestations in these children. The four children older than 6 months were who were only FTA-IgG test positive are likely to represent past or latent syphilis infection.

In conclusion, the prevalence of syphilis is high in healthy urban black children, which highlights the importance of antenatal screening and appropriate treatment for syphilis.

We thank the following for their assistance: R H Bhana, V Singh, N Moodley, J Van den Ende, H M Coovadia and R Theipal.

A community-based seroprevalence survey of syphilis in black children

Sir,—Reliable estimates of the prevalence of syphilis are not readily available for most African countries, including South Africa. The available prevalence rates are almost exclusively confined to selected population groups such as attenders of antenatal and sexually transmitted diseases clinics.

Seroprevalence studies of syphilis in black antenatal clinic attenders have reported prevalence rates varying from 13% to 23% while prevalence rates varying from 30% to 35% have been reported in sexually transmitted diseases clinic attenders, a known high risk group. These data, notwithstanding their selection biases, indicate that syphilis is widespread in South Africa, particularly, amongst blacks. However, little is known about the prevalence of syphilis in black children. Van Niekerk et al previously reported a 2% prevalence of syphilis amongst schoolchildren in Bloemfontein but no data are available on black children in Natal. We undertook a community-based seroprevalence survey to determine the prevalence of exposure to syphilis in healthy black children in Umlazi, a black township south of Durban.

Four hundred and three children were randomly selected from a larger representative sample of 805 children which was obtained with minimal selection biases for a study conducted in 1985. Six of the selected children had insufficient sera and the remaining 397 sera were tested for syphilis antibodies of the IgG-class using the fluorescent treponemal antibody test (FTA-IgG).

Children who were positive by the FTA-IgG test were tested for the presence of IgM-class antibodies to syphilis using the fluorescent treponemal antibody test (FTA-IgM). Children who were positive by the FTA-IgM test were also tested for the presence of rheumatoid factor. All tests were performed in accordance with the manufacturers instructions.

The mean age was 6 years old and 4 months (range: newborn to 13 years) and 47-1% were males. The FTA-IgG test was positive in 14 children, in whom three were also positive by the FTA-IgM test. The three FTA-IgM test-positive children, aged 12 months, 18 months and 7 years and 9 months, were negative for rheumatoid factor. Seven of the children who were only FTA-IgG test positive were below the age of 6 months, suggesting that they are more likely to represent passively acquired maternal antibodies.

The overall prevalence of syphilis antibodies was 3.5% (95% confidence interval (CI) 1.7%-5.3%). Since seven of the 14 positive children are likely to represent maternal antibodies the prevalence of syphilis in healthy black children is 1.8% (CI: 0.5%–3.1%).

None of the children had clinical evidence of syphilis. Of the 3 FTA-IgM test positive children, it is likely that the two younger children represent congenitally acquired syphilis while the oldest child could have acquired syphilis venereally. The widespread use of antibiotics, especially penicillin, in the course of medical care could account for the lack of clinical manifestations in these children. The four children older than 6 months were who were only FTA-IgG test positive are likely to represent past or latent syphilis infection.

In conclusion, the prevalence of syphilis is high in healthy urban black children, which highlights the importance of antenatal screening and appropriate treatment for syphilis.

We thank the following for their assistance: R H Bhana, V Singh, N Moodley, J Van den Ende, H M Coovadia and R Theipal.

YACOB M COOVADIA
Department of Medical Microbiology, Faculty of Medicine, University of Natal.

SALIM S ABDool KARIM
Research Institute for Diseases in a Tropical Environment of the South African Medical Research Council, PO Box 17120, Congella, 4013 Durban, South Africa.

Prevalence of Chlamydia trachomatis infection in pregnant women in Zaire

Sir,—Chlamydia trachomatis has been recognised as a major cause of non-gonococcal urethritis (NGU), epididymitis and proctitis in men and of mucopurulent cervicitis, endometritis and acute salpingitis in women. In addition, Chlamydia trachomatis is a common infectious agent in pregnant women.

Depending on the population studied the prevalences have ranged from 2% to 37%. In several African cities such as Fajara (Gambia), Nairobi (Kenya) and Accra (Ghana) prevalences of 6.9%, 10% and 7% respectively have been reported.

The population we studied consisted of 101 pregnant women, attending the antenatal clinic of the Hôpital de Kyondo (Zaire, Africa, June 1988). At their visit in the last term of their gestation specimens were taken for Chlamydia trachomatis from the endocervix of the women using a cotton-tipped swab. Immediately after collection a smear was made by rolling the swab over a microscope slide. Then the smear was air-dried and fixed with 0.5 ml methanol and again the slide was air-dried. After storage at 4°C for one month in the hôpital de Kyondo the slides were sent to the Department of Medical Microbiology, University of Limburg (Maastricht, Holland), where Chlamydia trachomatis was detected by using a direct immunofluorescent (IF) staining technique (Pathfinder,
Kallestad diagnostics, Texas USA), with an epifluorescence microscope (Zeiss) at a magnification of ×400. A specimen was considered as positive when ten or more apple-green fluorescent-stained elementary bodies were present. The mean age of the women who participated in the study was 23.8 years (the age of 13 women was unknown). The prevalence of Chlamydia trachomatis in the pregnant women examined was 9% (9 out of 101 women). Remarkably, the highest prevalence 2 out of 6 (33%) was found in the age group 36-40 years (table). Although the prevalence percentages in the present investigation were of the same order as those found in other African countries, one has to take into account that different methods were used in the studies described. Therefore it is rather difficult to compare the data from the different surveys. In view of the relatively small number of neonates (n = 59) tested, no definite conclusions can be drawn from the effect of a Chlamydia trachomatis infection on the pregnancy outcome, such as birthweight and stillbirth.

In conclusion, endocervical Chlamydia trachomatis infection in pregnant women in Zaire do occur, but further investigations of the consequences of this infection on pregnancy outcome are needed.

GÉRALDINE BEAUJEAN
University of Limburg,
Heerlen, the Netherlands
INGRID WILLEMS
University of Limburg
Koutoemela 6
6441 CM Brunssum, the Netherlands

We thank the Department of Medical Microbiology of the University of Maastricht, J. Philips and E. Stobberingh for their support and advice, and the staff of the Hôpital de Kyondo.

The study was supported by a grant of de Beer Company.

1 Oriel JD, Ridgway GL. Genital infection by Chlamydia trachomatis Edward Arnold Ltd, London, 1982, p. 4-5.

The Prevalence of Chlamydia infection in outpatient clinics in Beijing, China

SIR,—We have studied the prevalence of Chlamydia trachomatis in Beijing, China, by use of a fluorescein-labelled monoclonal antibody. A positive result implies the identification of at least ten elementary bodies; a negative result was based only upon adequate smears that revealed intact squamous and/or columnar epithelial cells in the specimen well.

Six hundred and seventy eight women attending the Peking Union Medical College Hospital were recruited into the study between April 1988 and May 1989. Twenty eight smears were unsatisfactory. The results of the remaining 650 smears are reported here. We found the following rates of chlamydial infection: Sexually transmitted disease clinic (27/43, 62.8%), Infertility clinic (30/334, 9.0%), Gynecology clinic (10/168, 6.0%) and Obstetric clinic (3/105, 2.9%). The highest prevalence was seen in those aged under 25 years (9/33, 27.3%) and in those aged 40 years and over (7/29, 24.1%) compared to those aged 25–39 (54/588, 9.2%).

The prevalence of chlamydia in 1000 women attending a gynaecology outpatient department in Hangzhou in 1986 was 1%. Our data demonstrate a higher prevalence in Beijing in 1989 and this may reflect an increasing incidence of chlamydial infection in China.
Prevalence of Chlamydia trachomatis infection in pregnant women in Zaire.

G Beaujean and I Willems

doi: 10.1136/sti.66.2.124-a

Updated information and services can be found at:
http://sti.bmj.com/content/66/2/124.2.citation

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/