The vagina has reducing environment sufficient for activation of *Trichomonas vaginalis* cysteine proteinases

JF Alderete, Daniele Provenzano

Background: *Trichomonas vaginalis*, a worldwide distributed sexually transmitted protozoan, is remarkable for synthesis of numerous, distinct cysteine proteinases, the significance of which is evidenced by the presence in vivo of soluble proteinases in secretions and antiproteinase antibody in serum of patients with trichomonosis. These proteinases purportedly play a role in host parasitism and immune evasion.

Objective: It is known that for cysteine proteinases to be functional, they must be activated by disulphide reducing reagents. Whether or not the host vaginal environment has the reducing environment essential for activation of the trichomonad cysteine proteinases is unknown. Our goal, therefore, was to determine whether or not vaginal secretions had sufficient reducing power to activate the trichomonad proteinases.

Methods: 48 vaginal washes (VWs) from patients were assayed for reducing equivalents and a score in dithiothreitol (DTT) reducing equivalents was assigned to each VW. Activation of trichomonad cysteine proteinases was then tested under the range of reducing equivalents detected from VWs. The possible protective effect of hydrogen peroxide, an oxidising agent produced by some *Lactobacillus* species, on proteinase activity was also determined.

Results: Nine of 48 VWs (18.7%) possessed < 10 μM DTT reducing equivalents, four VWs (8.3%) had from 20 μM DTT to 40 μM DTT reducing equivalents, and most (50%) were between 10 μM to 15 μM. Overall, the range in VWs was from ~10 μM to 40 μM reducing equivalents. Importantly, data suggest differential proteinase activation over this in vivo range of reducing level. Only two *T vaginalis* cysteine proteinase activities were stimulated at 2-5 μM DTT in contrast with all proteinase activities present at 40 μM DTT, albeit quantitatively diminished compared with the activity at 1 mM DTT, the concentration routinely used in vitro. Finally, hydrogen peroxide reversibly neutralised all trichomonad proteinases.

Conclusions: These results show that the vagina of women has a reducing environment adequate for activation of trichomonad proteinases. The data underscore that the host environment plays a role in the host-parasite interrelation. Finally, hypotheses can now be formulated to help explain resistance and susceptibility to infection commonly reported among women and between men and women with trichomonosis.

(Genitourin Med 1997;73:291–296)

Keywords: *Trichomonas vaginalis*; vagina; cysteine proteinase
tatively and quantitatively, the numerous trichomonal proteinases thereby contributing to a chronic, non-self-limiting infection and minimal manifestation of tissue cytopathology.

In this report we show that vaginal secretions obtained from patients with trichomonosis do indeed possess an environment adequate for activation of the cysteine proteinases. It is noteworthy that the reducing levels produced differential activation or quantitatively distinct amounts of proteinases. These data reinforce the idea that variations in reducing levels in vaginal secretions play a role in infection by T. vaginalis and possibly in disease outcome. The observations made in this report point to future questions that must be answered to fully understand this complex host–parasite interaction and to meaningfully develop future infection and/or disease intervention strategies.

Materials and methods

CULTURES

T. vaginalis isolates IR78, NYH 286, T048, and T068-II were grown at 37°C in trypticase yeast extract maltose (TYM) supplemented with 10% heat inactivated horse serum (HHIS), as described before. To optimally visualise for trichomonad cysteine proteinase activities in substrate gels, as described below, isolate T068-II was also grown under low iron conditions in the presence of 30 μM 2,2-dipyridyl (2,2-DP). Organisms (2 × 10^7) were collected at mid to late logarithmic phase of growth by centrifugation at 500 × g for 5 minutes after washing three times in ice cold phosphate buffered saline (PBS). Cells were either used immediately or frozen at −70°C until needed. Identical proteinase patterns were obtained with lysates derived from either fresh or frozen parasites, as before.

DETERMINATION OF REDUCING LEVEL IN HUMAN VAGINAL WASHES

To maximise detection of reducing ability, vaginal washes (VWs) were obtained from the source previously reported by us and processed as described before. Briefly, a volume of 5 ml of a VW was obtained in sterile PBS by rinsing the vaginal wall numerous times. To this VW a large swab, which was utilised to scrape the vaginal wall, was then immersed in the VW from the same patient. VW was then clarified as previously described by centrifugation at 500 × g to remove large cellular debris followed by centrifugation at 17 500 × g to remove additional insoluble debris. The VWs were kept stored at −70°C until utilised. Upon thawing and just before use, VWs were filter sterilised through 0.22 μm acrodisc filters (Gelman Sciences, Ann Arbor, MI, USA).

The reducing potential of patient VWs was determined spectrophotometrically at 412 nm by comparing readings with a standard curve derived from a buffer comprised of known concentrations of DTT in Ellman's reagent (5,5'-dithio-bis(2-nitrobenzoic acid; DTNB)) (100 mM TRIS-HCl, pH 8.0, 100 mM EDTA, 10 mM DTNB, 50 mM NaPO_4, pH 7.0, 10% sodium dodecylsulphate (SDS)). Reducing values of VWs diluted in DTNB were obtained from the average of triplicate determinations, and values were expressed as μM DTT equivalents. Reducing equivalents ≤ 10 μM DTT were below the detection limit of DTNB and, therefore, represented as ≤ 10.

DETECTION OF TRICHOMONAD CYSTEINE PROTEINASE ACTIVITY

Protocols for preparation of parasite lysates and for substrate gel electrophoresis have been extensively described by us and others. Pelleted parasites were solubilised in 200 μl electrophoresis dissolving buffer (125 mM TRIS-HCl, pH 6.8, 4% SDS, 20% glycerol, and 10% bromophenol blue) in the absence of β-mercaptoethanol. Samples (1 μl) were electrophoresed at 100 V in a minigel apparatus (BioRad Laboratories, Hercules, CA, USA) on 7% acrylamide copolymerised with 1.5% gelatin, as before.

After SDS-PAGE, trichomonal proteinases were activated in proteinase activation buffer (PAB) (100 mM sodium acetate and 2.5% Triton-X 100, pH 5.5) prewarmed to 37°C containing varying concentrations of DTT. In this case, preparative slab gels were cut so that identical amounts of trichomonal protein were incubated separately in PAB containing specific amounts of DTT. Negative controls were incubated in PAB without any addition. PAB with hydrogen peroxide (10 μM) was also tested to determine the effect on proteinase activity. Activation of proteinases was performed by placing gels on a shaker for 2 hours at 37°C with one change of buffer, and proteinase activity was seen after staining in Coomassie brilliant blue overnight followed by destaining for 2 hours in a solution of 7% acetic acid and 5% methanol.

DENSITOMETRIC ANALYSIS OF SUBSTRATE GELS FOR DETERMINATION OF RELATIVE PROTEINASE ACTIVITY

All gels were digitalised with a flatbed scanner, and pixel intensity of each clear area representing a proteinase degradation band was quantified and graphed with the NIH Image software version 5.17. Percentage degradation for each band was calculated as follows: 100 ÷ ((no pixels scanned from gels activated at 1 mM DTT) × (no pixels scanned from gels activated at < 1 mM DTT)).

Results

APPROXIMATION OF REDUCING LEVEL IN VWs

We did not know whether it would be possible to measure any reducing ability in VWs obtained and processed as described in Materials and methods. We further appreciated that any value of reducing level detected may not reflect that found at a specific site in the vagina parasitised by T. vaginalis. None the less, the question regarding whether the vagina possessed an environment sufficient to activate trichomonal proteinases was important to attempt determination of in vivo reducing levels.
The vagina has reducing environment sufficient for activation of Trichomonas vaginalis cysteine proteinases

The vagina has reducing environment sufficient for activation of Trichomonas vaginalis cysteine proteinases. Absorbance is represented by the top insert. The absorbance graph shows the standard curve using different concentrations of dithiothreitol (DTT), with a representative set of VWs analysed represented by the plus signs. The protocol was as described in Materials and methods. Absorbance was monitored at 412 nm wavelength.

Figure 1 Distribution of reducing levels among the vaginal washes of patients with trichomoniasis. On top of each bar are the numbers of samples positive for each range. A total of 48 vaginal washes was examined. The inset shows the standard curve using different concentrations of dithiothreitol (DTT), and a representative set of VWs analysed is represented by the plus signs. The protocol was as described in Materials and methods. Absorbance was monitored at 412 nm wavelength.

Figure 1 presents the results from the evaluation of 48 VWs and extrapolation of DTT equivalent levels from a standard curve using μM amounts of DTT (inset). The majority of the VWs (50%) had DTT reducing equivalents between 10 μM and 15 μM. Nine of 48 (18.7%) VWs assayed had ≤ 10 μM DTT equivalents. In contrast, 11 of 48 (23.0%) had between 15 μM and 20 μM and four VWs (8.3%) had 20 μM to 40 μM DTT equivalents. This range (≤ 10 μM to 40 μM) was far lower than the 1 mM amount of DTT normally employed to examine the trichomonad cysteine proteinases in vitro. \(^{18,19,22}\) None the less, these data show that VWs from patients do indeed possess reducing ability.

ARE VW REDUCING LEVELS SUFFICIENT TO ACTIVATE TRICHOMONAD CYSTEINE PROTEINASES?

We next wanted to determine whether cysteine proteinases were detected when activation was performed using concentrations of DTT within the range found in the VWs. In addition, because the manner in which the VWs were obtained and processed could yield lower values than those of undiluted vaginal secretions, we evaluated reducing levels from 10 μM up to 1 mM for comparative purposes.

Figure 2 illustrates proteinase profiles of lysates corresponding to T. vaginalis isolate T068-II organisms where gels were treated with decreasing amounts of DTT (lanes 1–9). Lysate of this parasite density was used because, by substrate gel electrophoresis, individual proteinase band activities were best resolved for accurate visualisation and comparisons. \(^{16}\) This amount of lysate also gives reproducible total proteinase patterns among different T. vaginalis isolates that were examined identically as presented here and for which similar results were obtained. Equally important, the number of parasites is relevant to that found in vivo. \(^{33}\) Finally, that the degrading activities being analysed are cysteine proteinases has been confirmed using specific inhibitors. \(^{16-18,22}\)

Amounts of DTT above 100 μM (lane 2) gave patterns similar to 1 mM DTT (lane 1). By contrast, beginning at 100 μM (lane 2), there was a decrease in total proteinase activity, especially in the lower M₅ (lane 1 versus lanes 3). Concentrations of DTT as low as 2.5 μM still gave detectable proteinase activity above background, as seen in lane 9 (greater than the negative control without addition of any reducing agent).

We had noticed that any basal level of proteinase activity observed in the negative controls could be readily neutralised by addition of 10 μM hydrogen peroxide in the activation buffer (lane 10). We, therefore, thought it would be important to determine whether hydrogen peroxide neutralised the activity of DTT pretreated cysteine proteinases. Hydrogen peroxide is known to reverse the effect of DTT, \(^{30,31}\) and, as recently hypothesised, hydrogen peroxide producing Lactobacillus might therefore afford protection from T vaginalis infection. \(^{33,35}\)

Identical experiments as above were performed in substrate gels that were activated in 40 μM DTT, the minimum concentration found in VWs that gave good activation of the trichomonad cysteine proteinases (fig 2), except that activation buffer incorporated varying amounts of H₂O₂. At 200 μM H₂O₂, no activation of proteinases was detectable.
Proteinase bands F and G were greatly decreased by 100 µM DTT (table) and were reduced in activity by 90% at 50 µM DTT. Prominent substrate degradation by proteinase bands D and E were also strongly affected by a decline in DTT concentration; a ~50% reduction in proteolysis occurred by 100 µM DTT, and ~80% activity was diminished by 50 µM DTT. Band C was decreased 50% in activity by 50 µM DTT, while band regions A and B approached a 50% reduction in activity by 20 µM DTT. Therefore, when evaluating the level of DTT at which a 50% reduction in activity is detected, differences are apparent among the proteinase band regions.

Discussion
The interrelation between the host and *Trichomonas vaginalis* is exceedingly complex, and some of the many factors that contribute to such complexity include the multiple cysteine proteinases that potentially contribute to host cytopathology. We have previously hypothesised that the in vivo synthesis of the proteinases must somehow be under the control of environmental cues so as to modulate the number and amount of proteinases needed at any particular moment of infection. In this scenario only that quantity of proteinases necessary for parasite survival and which provoke minimal host damage would be both present and active. Recent evidence shows the induction by iron of proteinases with specific functions, such as degradation of complement C3 to avoid lysis through the alternative pathway. In addition to regulatory paths that control the synthesis of the trichomonad proteinases, we now present the possibility that host reducing levels may also regulate the activity of the proteinases. This would provide another mechanism of control over the many proteinases produced by *T vaginalis*.

Of importance was the finding that VWs indeed possess reducing ability. To our knowledge, this may be the first time that the question regarding whether, during infection, in vivo conditions are suitable to activate the trichomonad proteinases has been addressed. In this report, we show that VWs of patients with trichomonosis have reducing ability for activation of the cysteine proteinases, albeit the levels detected by us were at 20-fold lower concen-

<table>
<thead>
<tr>
<th>In vivo range DTT (µM)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000-0</td>
<td>1-00</td>
<td>1-00</td>
<td>1-00</td>
<td>1-00</td>
<td>1-00</td>
<td>1-00</td>
<td>1-00</td>
</tr>
<tr>
<td>-</td>
<td>100-0</td>
<td>0-84</td>
<td>0-96</td>
<td>0-87</td>
<td>0-54</td>
<td>0-44</td>
<td>0-19</td>
</tr>
<tr>
<td>-</td>
<td>50-0</td>
<td>0-80</td>
<td>0-97</td>
<td>0-52</td>
<td>0-22</td>
<td>0-17</td>
<td>0-09</td>
</tr>
<tr>
<td>+</td>
<td>40-0</td>
<td>0-65</td>
<td>0-72</td>
<td>0-52</td>
<td>0-18</td>
<td>0-18</td>
<td>0-04</td>
</tr>
<tr>
<td>-</td>
<td>30-0</td>
<td>0-85</td>
<td>0-66</td>
<td>0-39</td>
<td>0-08</td>
<td>0-00</td>
<td>0-00</td>
</tr>
<tr>
<td>+</td>
<td>20-0</td>
<td>0-57</td>
<td>0-62</td>
<td>0-37</td>
<td>0-03</td>
<td>0-00</td>
<td>0-00</td>
</tr>
<tr>
<td>-</td>
<td>15-0</td>
<td>0-67</td>
<td>0-46</td>
<td>0-13</td>
<td>0-00</td>
<td>0-00</td>
<td>0-00</td>
</tr>
<tr>
<td>+</td>
<td>10-0</td>
<td>0-45</td>
<td>0-27</td>
<td>0-45</td>
<td>0-00</td>
<td>0-00</td>
<td>0-00</td>
</tr>
<tr>
<td>-</td>
<td>7-5</td>
<td>0-51</td>
<td>0-39</td>
<td>0-30</td>
<td>0-00</td>
<td>0-00</td>
<td>0-00</td>
</tr>
<tr>
<td>+</td>
<td>5-0</td>
<td>0-25</td>
<td>0-06</td>
<td>0-17</td>
<td>0-00</td>
<td>0-00</td>
<td>0-00</td>
</tr>
<tr>
<td>+</td>
<td>2-5</td>
<td>0-07</td>
<td>0-03</td>
<td>0-13</td>
<td>0-00</td>
<td>0-00</td>
<td>0-00</td>
</tr>
</tbody>
</table>

*Relative activity was calculated as described in Materials and methods.
†Band designations were from the individual areas of proteinase activity as presented in figures 2 and 3.
‡Minus and plus signs refer to the levels of reducing ability in DTT equivalents as determined from the evaluations of vaginal washes as shown in figure 1 and described in Materials and methods.

The effect of reducing level on relative activity of T vaginalis cysteine proteinases

Figure 3 Densitometric scanning of the proteinase bands obtained after activation at the designated dithiothreitol (DTT) concentrations. The surface under each peak was analysed as described in Materials and methods for quantitative presentation in the table. The dotted line was used to align each peak.

showing that hydrogen peroxide neutralised the action of the reducing environment needed for the cysteine proteinases.

To better quantify the proteinase activities, we performed densitometric scanning (fig 3) and evaluated each prominent gel band region labelled A to G (fig 3 and table).
trations than those used in vitro.16-19 It is conceivable that the lower amounts of reducing levels represent a dilution resulting from obtaining and/or processing the VV. Regardless, it is clear that lower amounts of reducing ability produce qualitatively and quantitatively decreased activity of parasite proteinases when compared with 1 mM DTT. Finally, it might have been predicted that all the proteinase activities would decrease equally at particular reducing level. This was not the case reaffirms the distinctness among the numerous cysteine proteinases, as suggested earlier.17 It is essential that we begin to understand the host factors and parameters within the site of infection that contribute to individual susceptibility and resistance to infection. The hypothesis that women with higher vaginal reducing ability may be more susceptible to parasitism and cytopathology seems reasonable, especially given the relation between qualitative and quantitative proteinase activities and differential reducing levels. This idea is plausible since proteinase activity is necessary for survival of \textit{T. vaginalis} through nutrient acquisition,11 cytoadherence,12 and immune evasion.13,16

If the hypothesis presented above is correct, then relative resistance by men to infection by \textit{T. vaginalis} may be related to the presence of oxidizing reagents that prevent activation of the trichomonad cysteine proteinases essential for survival. In fact, active oxygen species produced by human spermatozoa have been described,36,37 and this oxidative environment would not allow for host parasitism and establishment of a non-self limiting infection.

We showed the action of hydrogen peroxide in neutralising the reducing ability of DTT, which is a prerequisite for activation of the cysteine proteinases. Our results reinforce the notion that hydrogen peroxide producing \textit{Lactobacillus} may confer some measure of defence against \textit{T. vaginalis}. This is only possible, however, if sufficient amounts of hydrogen peroxide are produced at and bathe the site of infection. The idea to test for neutralisation of trichomonad proteinases resulted from the known reversible effect by hydrogen peroxide on systems requiring reducing environments.30,31 Furthermore, the idea may have merit because of the reports that the host may be protected from other sexually transmitted diseases by hydrogen peroxide producing \textit{Lactobacillus}.33-35 Although reversible, demonstration of hydrogen peroxide neutralisation of the activation power of DTT on trichomonad proteinases suggests that an approach for intervention of \textit{T. vaginalis} infection and cytopathology may result from generation of irreversible proteinase inhibitors or, alternatively, upon inhibition of the ability of the parasite to alter the normal protective flora of patients.

Based on the hypothesis proposed above, numerous questions require attention. \textbf{(1)} Does the level of vaginal reducing ability vary during menses, and, if so, are certain times during the cycle more favourable to proteinase activation, which then promotes host parasitism? \textbf{(2)} Does the relative reducing level in the vagina vary among different ethnic groups, thus explaining higher rates of trichomoniasis among African American women? \textbf{(3)} Does behaviour that predisposes women to \textit{T. vaginalis} infection, such as smoking,6 alter the vaginal reducing environment? \textbf{(4)} Is there a relation between the level of reducing ability, parasite growth and multiplication in vivo, and symptoms? \textbf{(5)} Is the relative absence of symptomaticolgy and the self limiting nature of infection among males correlate with absence of reducing ability at those sites? Our results provide a foundation from which testable hypotheses can be formulated and that may, ultimately, help us understand those important host factors pertinent to infection by this sexually transmitted agent.

This study was supported by Public Health Service grant AI 31498 from the National Institute of Allergy and Infectious Diseases. We gratefully acknowledge Ed Newton and Jeana Piper of the Department of Obstetrics and Gynecology of the UTHSCSA for their contribution of fresh clinical isolates and vaginal washes through the Collaborative STD Research Center. We thank Alan Barbour, Paul Horowitz, and Neal Robinson and their staff for allowing us to use their denominomy. Dr. and Mrs. Robert Barbour are gratefully acknowledged for her critical review of our manuscript and for her suggestions throughout these studies. Lastly, we thank Tonya Williams for her expert secretarial assistance in the preparation of this manuscript.

18. Coombs GH, North MJ. An analysis of the proteinases of

14 Diamond JS. The establishment of various trichomonads of animal and man in axenic cultures. J Parasitol 1957;43:488-90.

The vagina has reducing environment sufficient for activation of Trichomonas vaginalis cysteine proteinases.

J F Alderete and D Provenzano

doi: 10.1136/sti.73.4.291

Updated information and services can be found at:
http://sti.bmj.com/content/73/4/291

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/