Women with recurrent vaginal candidosis have normal peripheral blood B and T lymphocyte subset levels

D J White, M Stevenson, M Shahmanesh, T Gentle

Objective: To compare the B and T lymphocyte subset levels of otherwise healthy women suffering from frequently recurrent vaginal candidosis with a healthy control group.

Subjects: 26 unselected otherwise healthy women of reproductive age with at least four attacks of vaginal candidosis in the past year and more than three vaginal isolates of a moderate or heavy growth of Candida albicans. Controls were 26 patients or clinical and laboratory staff (asymptomatic for genital infection) matched for time of day and age within 5 years. Only three patients accepted an HIV test. All proved HIV negative. No controls were tested.

Main outcome measures: T lymphocyte subsets (CD4 and 8) and B lymphocytes (CD 19) as estimated from the total lymphocyte count and flow cytometry.

Results: No statistically significant difference between patients and controls.

Conclusion: No significant difference was found between patients and controls in levels of lymphocyte subsets.

Keywords: candidosis; T lymphocytes; B lymphocytes

Introduction
A majority of women will get an attack of vaginal candidosis (VC) at some time in their life and for most this is an occasional nuisance. In contrast, a few otherwise healthy women suffer from frequently recurring attacks of vaginal candidosis. Such recurrent vulvo-vaginal candidosis (RVVC) is probably multifactorial in origin but one important factor might be a deficiency of T helper cell function. This is indicated by the close association of vaginal candidosis with HIV related immunodeficiency. Mendling and Koldovsky have suggested that healthy women with RVVC may have low peripheral blood T lymphocyte counts and that such low counts were predictive of a therapeutic response to Thymopentin. This study was performed to investigate whether, in otherwise healthy women, RVVC is associated with abnormalities of peripheral blood T lymphocyte subsets compared with a matched control group.

Subjects
Blood samples were taken from 26 unselected otherwise healthy women aged 22–39 years (mean age 30) attending the department of genitourinary medicine for treatment of RVVC. All had suffered at least four attacks of vaginal candidosis in the past year. At least three of these episodes had been proved by the isolation of a moderate or heavy growth of Candida albicans from a high vaginal swab. Control blood samples were taken from female clinical and laboratory staff, and patients with unrelated asymptomatic conditions from the department of genitourinary medicine—for example, as contacts of genital warts or non-gonococcal urethritis. Samples were matched for time of day and age (within 5 years). Patients were offered an HIV test as part of their initial investigations but only three accepted this. They all proved HIV negative. Controls were not HIV tested. None of patients or controls admitted to any of the known risk factors for HIV. All patients were otherwise well and had no symptoms or history suggestive of a systemic medical condition.

Statistics
The sample size of at least 21 patients was chosen based on an assumed standard deviation of 250 cells × 10^9/l with a 90% power to exclude a difference of 250 cells × 10^9/l and p < 0.05. Although there was an attempt to pair controls with patients this was based on unpaired assumption so as to overestimate rather than underestimate the numbers required. Results from the control group were compared with the patient group by paired Student’s t tests.

Laboratory methods
Blood samples were taken between 0800 and 1100 and processed within the hour. Absolute white cell counts were obtained using a Technicon 3H. The absolute lymphocyte count, T lymphocyte subsets, and B lymphocytes were measured in the regional immunology department. This is an accredited department which participates in a national quality assurance scheme. The method used was lysed whole blood staining and flow cytometry (Becton and Dickinson FACScan). The reagents were Dako fluorescein isothiocyanate or phycoerythrin conjugated CD14,
476

were negative women. Although markers.

between the groups could be no statisti-
cally significant differences between them
($t = 1.15, p = 0.26$). These results were simi-
lar to both the laboratory normal range and
recently published reference range for HIV
negative women. In addition, there was no
significant difference between the cases and
control groups with regard to CD3 ($t = 1.31$,
$p = 0.20$), CD8 ($t = 0.98, p = 0.34$), or CD19
($t = 1.40, p = 0.17$) lymphocyte subsets.
Summary statistics for the differing groups are
shown in the table.

Discussion

We were unable to find any significant differ-
ence between our patient group and the con-
trol group in levels of lymphocyte subsets as
defined by CD3, CD4, CD8, and CD19
markers. Although there could be a small
difference between the groups this is not at a
level that is usually taken to be clinically sig-
ificant—for example, in the context of HIV
infection.

Recent work by Fidel et al demonstrated in
a mouse model that T cell depletion did not
alter the natural course of a primary vaginal
infection with C albicans. In a further paper by
the same group the induction of Candida spe-
cific suppressor T cells had no effect on the
vaginal Candida burden with the conclusion
that, in this animal model, systemic Th-1 type
T cells mediated immunity was unrelated to pro-
tective events in the vaginal mucosa. In an ani-
mal model antibody mediated protection against
candidal vaginitis has been demonstrated. Oral
candidosis has been related in HIV infection to a
loss of specific salivary antibody to C albicans.
It may be therefore that the higher incidence of
candidal vaginitis seen in HIV is related to sec-
ondary B cell dysregulation rather than T cell
depletion itself.

Further work is required to delineate what if
any deficit is present in the host defence mech-
anism of women suffering recurrent vaginal
candidiasis who are not infected by HIV. Any
such deficit is not reflected by any clinically ver-
ifiable change of peripheral T cell subsets.

Results

The distribution of CD4 lymphocyte subset
measurements in the patients and normal con-
trols was very similar and there were no statisti-
cally significant differences between them
($t = 1.15, p = 0.26$). These results were simi-
lar to both the laboratory normal range and
recently published reference range for HIV
negative women. In addition, there was no
significant difference between the cases and
control groups with regard to CD3 ($t = 1.31$,
$p = 0.20$), CD8 ($t = 0.98, p = 0.34$), or CD19
($t = 1.40, p = 0.17$) lymphocyte subsets.
Summary statistics for the differing groups are
shown in the table.

Discussion

We were unable to find any significant differ-
ence between our patient group and the con-
trol group in levels of lymphocyte subsets as
defined by CD3, CD4, CD8, and CD19
markers. Although there could be a small
difference between the groups this is not at a
level that is usually taken to be clinically sig-
ificant—for example, in the context of HIV
infection.

Recent work by Fidel et al demonstrated in
a mouse model that T cell depletion did not
alter the natural course of a primary vaginal
infection with C albicans. In a further paper by
the same group the induction of Candida spe-
cific suppressor T cells had no effect on the
vaginal Candida burden with the conclusion
that, in this animal model, systemic Th-1 type
T cells mediated immunity was unrelated to pro-
tective events in the vaginal mucosa. In an ani-
mal model antibody mediated protection against
candidal vaginitis has been demonstrated. Oral
candidosis has been related in HIV infection to a
loss of specific salivary antibody to C albicans.
It may be therefore that the higher incidence of
candidal vaginitis seen in HIV is related to sec-
ondary B cell dysregulation rather than T cell
depletion itself.

Further work is required to delineate what if
any deficit is present in the host defence mech-
anism of women suffering recurrent vaginal
candidiasis who are not infected by HIV. Any
such deficit is not reflected by any clinically ver-
ifiable change of peripheral T cell subsets.

1. Macher AM. The pathology of AIDS. Public Health Report
2. Rhoads JL, Wright DC, Redfield RR, Burke DS. Chronic
vaginal candidiasis in women with human immunodeficien-
cy virus infection. JAMA 1987;257:3105-7.
3. Mendling W, Koldovsky U. Immunological findings in
patients with chronically recurrent vaginal candidiasis and
4. Lowe D. Planning for medical research. Middlesbrough:
Astraglobe Ltd, 1993.
BJ, et al. Reference ranges and source of variability of
CD4 counts in HIV seronegative women and men. Gento-
6. Fidel PL, Lynch ME, Sobel JD. Effect of preinduced can-
dida-specific systemic cell-mediated immunity on exper-
imental vaginal candidiasis. Infect Immun 1994;62:
1032-8.
7. Fidel PL, Lynch ME, Sobel JD. Circulating CD4 and CD8
T cells have little impact in host defense against exper-
imental vaginal candidiasis. Infect Immun 1995;63:
2403-8.
Barnardis F. Rats clearing a vaginal infection by Candida
albicans acquire specific antibody-mediated resistance to
9. Wray D, Felix DH, Cumming CG. Alteration of humoral
Women with recurrent vaginal candidosis have normal peripheral blood B and T lymphocyte subset levels.

D J White, M Stevenson, M Shahmanesh and T Gentle

Genitourin Med 1997 73: 475-476
doi: 10.1136/sti.73.6.475

Updated information and services can be found at:
http://sti.bmj.com/content/73/6/475

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/