Original article

Tissue specific HPV expression and downregulation of local immune responses in condylomas from HIV seropositive individuals

Istvan Arany, Tanya Evans, Stephen K Tyring

Objective: To study the effect of tissue specific human papillomavirus (HPV) expression and its effect on local immunity in condylomas from HIV positive individuals.

Methods: Biopsy specimens of eight penile and eight perianal condylomas from HIV seropositive individuals were analysed. Expression of viral genes (HIV-tat and HPV E7 and L1) was determined by RT-PCR. The status of local immunity also was determined by RT-PCR by measuring CD4, CD8, CD16, CD1a, HLA-DR, and HLA-B7 mRNA levels in the tissues. Differentiation was determined by measuring involucrin, keratinocyte transglutaminase, as well as cytokeratins 10, 16, and 17. Proliferation markers such as PCNA and c-myc were also determined.

Results: The transcription pattern of HPV in perianal condylomas, which preferentially expressed the early (E7) gene, was different from that of penile condylomas, which primarily expressed the late (L1) gene. This transcription pattern is in good correlation with the keratinisation and differentiation patterns of the two epithelia: perianal biopsies preferentially expressed K16 and K17 while penile warts mainly expressed K10, markers of parakeratotic and orthokeratotic epithelia, respectively. Perianal biopsies also showed a higher degree of proliferation (PCNA and c-myc). Interestingly, transcription of HIV-tat was also higher in perianal than in penile biopsies. A high degree of local immunodeficiency was observed in perianal biopsies—that is, levels of CD4, CD16, and CD1a mRNAs were significantly lower. A negative correlation between CD1a (Langerhans cells) levels and HPV E7 levels was established. HPV E7 levels positively correlated with HIV-tat levels. Perianal tissues demonstrated more CD1a depression and tat associated HPV upregulation.

Conclusion: HIV influences the expression of HPV genes resulting in local immunosuppression that might lead to an inappropriate immune surveillance of viral infection. Also, tissue type is an important factor in controlling viral transcription in a differentiation dependent manner. These findings may explain the higher rate of dysplasia and neoplasia in the perianal area.

(Sex Transm Inf 1998;74:349-353)

Keywords: human papillomavirus; HIV; condylomas; immunity

Introduction

Human papillomaviruses (HPVs) infect squamous epithelia causing benign or malignant lesions on mucosal and cutaneous surfaces.1 Since benign HPV associated lesions do not disseminate, the local immune response is a key point in regulation of active infection.2 However, HPVs can impair local immunity, as observed by decreases in the number of Langerhans cells,3 by downregulation of HLA expression,4 and by downregulation of immune cytokines.5-8 Our former studies demonstrated that HPV affects local immunity in a HPV early gene dependent fashion.9 Also, expression of HPV early genes depends on tissue type—that is, it correlates well with the status of differentiation and keratinisation.10

Numerous studies indicate that HIV infection may promote the clinical manifestations of subclinical or latent HPV infection.11 Thus, a higher incidence of condyloma acuminatum12,13 and/or cervical disorders14,15 has been observed in the HIV affected population. HIV infection may influence the pathogenesis of HPV associated diseases either directly through molecular interactions between viral genes and/or indirectly through effects on the immune functions.16 The relative importance of altered systemic or local immune responses to HPV infection in HIV seropositive individuals, however, is neither well documented nor understood. Accordingly, our aim was to study the tissue differentiation dependent HPV expression and its effects on local immunity in condylomas from HIV positive individuals.

Materials and methods

SPECIMENS

Eight penile and eight perianal condyloma biopsies were collected from HIV positive individuals. Each biopsy was bisected; one part was placed in formalin and one part frozen at −70°C. The formalin fixed section was subsequently determined by a board certified dermatopathologist to be condyloma acuminatum. The snap frozen part was stored in liquid nitrogen for further molecular analysis. HIV seropositivity and peripheral CD4 count were determined by routine laboratory diagnostic methods. Only one lesion was obtained per individual, however, we analysed and compared eight patients for penile and eight patients for perianal biopsies.
NUCLEIC ACID ISOLATION
DNA and RNA were simultaneously isolated from frozen specimens using Tri-Reagent (Molecular Research Center, Inc, Cincinnati, OH, USA) as described earlier.10

DETECTION AND TYPING OF HPV
Presence of HPV in tissue DNAs was confirmed by polymerase chain reaction (PCR) using consensus L1 primer pairs.18 HPV types were determined by direct sequencing of the L1-PCR fragments as described elsewhere.19 Alternatively, L1-PCR fragments were hybridised by a slot blot technique using labelled type specific probes.18 19

SEMIQUANTITATION OF MRNAS BY RT-PCR
RNAs were reverse transcribed using random hexamers (Promega) and Superscript II reverse transcriptase (Gibco/BRL). The resulting cDNAs were subjected to PCR amplification using specific primer pairs together with an internal control gene (G3PDH: glyceraldehyde-3-phosphate-dehydrogenase) as described earlier.10 G3PDH served as a constitutively expressed internal control gene to normalise uneven cDNA loads and demonstrate integrity of RNAs. Primers were designed and synthesised, as previously reported.20 The sizes of gene specific PCR fragments are as follows: G3PDH (452 bp), INV (involucrin: 394 bp), Tgase (keratinocyte transglutaminase: 400 bp), K10 (keratin 10: 659 bp), K16 (keratin 16: 357 bp), K17 (keratin 17: 400 bp), VIM (vimentin: 399 bp), PCNA (proliferating cell nuclear antigen: 418 bp), c-myc (479 bp), HIV-tat (132 bp), HPV6-E7 (306 bp), HPV11-E7 (248 bp), HPV6-L1 (440 bp), HPV11-L1 (401 bp), HLA-B7 (718 bp), HLA-DRβ (280 bp), CD1a (Langerhans cell: 424 bp), CD1d (macrophage/NK cell: 332 bp), CD4 (helper T cell: 438 bp), and CD8 (cytotoxic T cell: 454 bp). PCR fragments were resolved in 1.5% agarose gel by electrophoresis and transferred to a nylon membrane (Amersham) by semi-dry transfer system (BioRad). Membranes were hybridised with end labelled type specific probes and autoradiographed. Autoradiograms were evaluated by densitometry (Alpha Innotech). mRNA levels were given as ratios to the internal control gene G3PDH.

STATISTICAL ANALYSIS
Data were analysed by linear regression and Student’s t test using SIGMASTAT statistical software (Jandel).

RESULTS
HPV TYPES IN DIFFERENT BIOPSIES
Perianal and penile biopsies exhibited double HPV infection: in each biopsy we demonstrated the presence of HPV types 6 plus 11 (data not shown). Condylomas usually contain single infection of HPV 6 or 11.11 22 However, under immunosuppression multiple infection frequently occurs.23 Our observation is in agreement with those results. Biopsies, which originated from patients with CD4 counts less than 300 also contained oncogenic HPV types,24 25 such as types 16 and 18, but in low copy numbers.26 In these experiments, we exclusively used those biopsies that contained only the non-oncogenic types—that is, patients with CD4 counts >300.
STATUS OF PROLIFERATION AND DIFFERENTIATION IN PENILE AND PERIANAL BIOPSIES

mRNA levels of tissue differentiation markers\(^27\) such as involucrin (INV), keratinocyte transglutaminase (TGase), and keratin 10 (K10) were determined along with proliferation markers\(^28–30\) such as proliferating cell nuclear antigen (PCNA), c-myc, and keratins 16 (K16) and 17 (K17) (fig 1). As shown, perianal biopsies expressed lower levels of differentiation markers, but PCNA and c-myc, as well as K16 and K17 were significantly higher in perianal tissues. Vimentin (VIM), a marker of dermal tissues\(^31\), was used to demonstrate equal epidermis/dermis ratios in biopsies.

EXPRESSION OF VIRAL GENES

mRNA levels of HPV early (E7) and late (L1) genes as well as HIV-tat gene were determined by RT-PCR (figs 2, 3). Interestingly, perianal tissues preferentially expressed HPV E7 transcripts while penile tissues mainly expressed L1 products. Owing to the multiple HPV infection, HPV E7 and HPV L1 levels are the sum of HIV-6 and HPV 11 E7 and L1 levels. HIV-tat expression was greater in perianal tissues.

STATUS OF LOCAL IMMUNITY IN BIOPSIES

There were significant differences in local immune factors between penile and perianal specimens (fig 4). There was a significant depletion in Langerhans cells (CD1a) and CD4 positive T lymphocytes in the perianal tissues. Also, perianal tissues were less infiltrated by macrophages (CD16) than penile tissues. Surface molecules of antigen presentation such as MHC class I (HLA-B7) and MHC class II (HLA-DR) were also downregulated in perianal biopsies relative to penile tissue.

CORRELATION BETWEEN HIV-TAT AND HPV E7 LEVELS AS WELL AS LOCAL IMMUNOSUPPRESSION

HIV-tat levels positively correlated with HPV E7 levels and negatively with L1 (data not shown) in all biopsies (fig 5A). However, this correlation significantly differed between penile and perianal tissues; perianal biopsies exhibited higher HIV-tat related HPV E7 (see also fig 3). On the other hand, HPV E7 levels negatively correlated with CD1a levels (Langerhans cells) (fig 5B). A significantly higher HPV E7 related depletion of CD1a was observed in perianal specimens.

Discussion

Evidence from immunosuppressed individuals strongly suggests that the immune system is important in the pathogenesis of HPV induced disease.\(^32\) Studies on spontaneous or treatment induced regressing genital warts demonstrated that cell mediated immune responses are important in clearance of wart tissues in which TH-1 type lymphocytes and macrophages predominate.\(^33\) However, there is little knowledge on interactions between the local immune system and the infecting HPV. Studies suggest a direct interaction between HPV E5 gene and MHC molecules.\(^34\) Other studies found a negative correlation between Langerhans cell content and HPV replication\(^35\) or HPV E7 levels.\(^3\) Also, HPV infected cells express significantly lower

![Figure 4](http://stibmj.com/)

Figure 4 Status of local immunity in penile and perianal condyloma biopsies from HIV positive individuals. mRNA levels of antigen presentation and recognition molecules (HLA-B7 = MHC class I; HLA-DR = MHC class II; CD1a = Langerhans cells; CD16 = macrophages/NK cells; CD4 = helper T cells; and CD8 = cytotoxic T cells) were determined by RT-PCR. mRNA levels were expressed as ratios of target gene normalised to G3PDH. Data are given as mean (SD) (n=8).

![Figure 5](http://stibmj.com/)

Figure 5 Association between HIV-tat and HPV E7 (A) as well as between HPV E7 and CD1a mRNA levels in penile and perianal condyloma biopsies from HIV positive individuals. (A) HIV-tat and HPV E7 mRNA levels were determined by RT-PCR in biopsies of penile and perianal condylomas. Linear regression was done using SIGMASTAT statistical software. (B) HPV E7 mRNA levels were also compared with Langerhans cell (CD1a) mRNA content.
amounts of pro-inflammatory cytokines. Therefore, either directly or indirectly, HPV infection is an important factor in influencing the status of local immunity. HPVs express different sets of genes, some of them termed “early” genes. These early genes, such as E6 and E7 are responsible for many of HPV related alterations in the infected cell. Their expression is tightly coupled to cellular differentiation. We also demonstrated that tissue specific differentiation characterised by expression of various keratins allows differentiation characterized by expression of various keratins of stratified squamous epithelia containing very low numbers of Langerhans cells. Since Langerhans cells contribute to local immunity, we investigated whether the impaired lymphocyte function in HIV infection allows the HPV infection to progress. In our cases, HIV-infected individuals had a lower rate of HPV occurrence in the perianal area than in the penile shaft both in HIV negative and positive individuals. These data also might explain the more aggressive and less curable properties of perianal lesions. Our conclusion is based on the assumption that specific mRNA species are probably produced by specific cell types. However, morphological correlation is necessary to further support these observations.

Conclusions

Differentiation properties of the perianal epithelium are different from the epithelium of the penile shaft. These differences determine the expression pattern of HPV, as the perianal epithelium shifts the HPV expression to the early genes. HIV infection might activate HPV early genes in a tissue specific manner, favouring the perianal epithelium. Consequently, the perineum may mount lower immune responses against HPV infection since it is more depleted in immune presenting cells such as Langerhans cells, CD4 T cells, and macrophages. This local immunodeficiency may account for the higher rate of HPV occurrence in the perianal area than in the penile shaft both in HIV negative and HIV positive individuals. These data also might explain the more aggressive and less curable properties of perianal lesions. Our conclusion is based on the assumption that specific mRNA species are probably produced by specific cell types. However, morphological correlation is necessary to further support these observations.

...
Tissue specific HPV expression and downregulation of local immune responses in condylomas from HIV seropositive individuals

37 Kam KH, Schwartz E, Puch E. Differences in keratin synthesis between normal epithelial and squamous cell carcinomas are mediated by an A. *Proc Natl Acad Sci USA* 1994;91:12804–9.

Tissue specific HPV expression and downregulation of local immune responses in condylomas from HIV seropositive individuals.
I Arany, T Evans and S K Tyring

Sex Transm Infect 1998 74: 349-353
doi: 10.1136/sti.74.5.349

Updated information and services can be found at:
http://sti.bmj.com/content/74/5/349

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/