Global views

Chlamydia trachomatis infection in an urban setting

Demographic data
We undertook a study to find out the Chlamydia trachomatis infection rate among the subjects attending three different clinical set ups in Mumbai (Bombay), India, for treatment of complications associated with reproductive health. These clinical set ups were: (a) a private gynaecology clinic; (b) an outpatient gynaecology facility in a public hospital; and (c) an infertility clinic of the institute.

Among the 123 subjects enrolled in the study, 108 were women belonging to the age group 25–38 years (mean age 31.3 years) and 15 were men of infertile couples, whose spouses were tested positive for Chlamydia trachomatis and 15 were men of infertile couples, whose spouses were tested positive for Chlamydia trachomatis infection. These males were asymptomatic and in the age group 25–38 years (mean age 31.3 years). The subjects were grouped into the following five groups on the basis of their clinical presentation:

Group I (n=16): women with history of obstetric complications such as ectopic pregnancy, stillbirth, spontaneous/repeated abortion, or preterm delivery.

Group II (n=25): women with either vaginitis or cervicitis or both who were considered to have lower genital tract infections.

Group III (n=7): asymptomatic women with a history of primary infertility of more than 2 years’ duration.

Group IV (n=60): women with complaints of abdominal pain, back pain, or irregular periods.

Group V (n=15): males of infected spouse.

These subjects were screened for Chlamydia trachomatis infection for the first time with consent. Among the 123 subjects enrolled in the study, 108 were women belonging to the age group 25–38 years (mean age 31.3 years) and 15 were men of infertile couples, whose spouses were tested positive for C. trachomatis. These males were asymptomatic and in the age group 25–38 years (mean age 31.3 years). The subjects were grouped into the following five groups on the basis of their clinical presentation:

Group I (n=16): women with history of obstetric complications such as ectopic pregnancy, stillbirth, spontaneous/repeated abortion, or preterm delivery.

Group II (n=25): women with either vaginitis or cervicitis or both who were considered to have lower genital tract infections.

Group III (n=7): asymptomatic women with a history of primary infertility of more than 2 years’ duration.

Group IV (n=60): women with complaints of abdominal pain, back pain, or irregular periods.

Group V (n=15): males of infected spouse.

These subjects were screened for C. trachomatis infection for the first time with consent.

Table 1  Chlamydia trachomatis infection in different groups of cases

<table>
<thead>
<tr>
<th>Groups</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
<td>16</td>
<td>25</td>
<td>7</td>
<td>60</td>
<td>15</td>
</tr>
<tr>
<td>Chlamydia positive (%)</td>
<td>3 (18.8)</td>
<td>5 (20)</td>
<td>1 (14.3)</td>
<td>1 (1.7)</td>
<td>5 (33.3)</td>
</tr>
</tbody>
</table>

Methods
Samples like cervical swab specimens, seminal plasma, and first void morning urine sediments (only from males) were used for detection of Chlamydia trachomatis antigen using the kit Chlamydiazyme (Abbott, USA).

Results
C. trachomatis infection rate is different in different groups of the study population and is presented in table 1.

Comment
Scanty information is available on incidence and prevalence of laboratory confirmed C. trachomatis of the genital tract in India. There is also a wide variation in the reported infection rate. In the present observation the infection rate varies between 14.3–20% among the women with reproductive health complications (groups I, II, and III). Some studies have shown higher rate of infection among the healthy control varied from 23.3–33%,

3 4 Among the group IV cases the infection rate is 1.7%, whereas the reported infection rate among the male population. Only 1.1% of the male subjects had chlamydia infection whose sexual partners had symptoms of vaginal discharge, but a high infection rate (33.3%) observed here among the male partners (group V) whose spouses were infected revealed the need for partner screening. All this scattered information emphasises the need of a detailed study in a larger population in the region to highlight the true prevalence of this disease and to decide the plan of action.

We thank Dr H S Juneja, the director of our institute for introducing the project with constant encouragement.

Contributors: JM-P designed the study, carried out the experiment, analysed the result, and wrote the manuscript; PKM and JSG collected samples from selected cases; UMD helped in the smooth running of the project.

JAYANTI MANIA-PRAMANIK
P K MEHERJI
J S GOKRAL
U M DONDE
Institute for Research in Reproduction,
J M Street, Parel, Mumbai - 400 012, India

Correspondence to: Dr Jayanti Mania-Pramanik
Jayantiem@rediffmail.com

Accepted for publication 13 December 2000

### Demographic data

Buenos Aires (Argentina) is an international port city of three million people surrounded by greater Buenos Aires, with a core population of 10 million people.

The STD service of the Hospital Nacional de Clínicas, University of Buenos Aires (HNC) deals with 80% patients from the city and 20% from the suburban areas. A total of 33,316 symptomatic patients (27,458 men and 5,858 women) were studied from 1985–1999. Patients attended under the standard regulations of HNC, primary care protocol, and so no additional written informed consent was required.

### Methods

*Neisseria gonorrhoeae* (NG) was investigated by direct Gram stain microscopy and by culture in Columbia agar supplemented with 5% blood and 1.5% protease peptone No 3 and in Thayer-Martin modified agar. NG was identified by positive oxidase and catalase tests, followed by carbohydrate biochemical tests after 72 hours’ incubation at 37°C without hypercapnia atmosphere. β-Lactamase was studied using nitrocefin. The minimal inhibitory concentration (MIC) was measured by agar dilution technique, and NCCLS guidelines were applied for isolate categorisation.

### Results


The incidence of NG (1998–9) in men who have sex with men (MSM) was 15.7% compared with 5.9% in heterosexual men (odds ratio 2.44 (95% CI 1. 59–3.72) p<0.001, Yates’ correction). Between 1985 and 1999, 83 extragenital gonococci were isolated (rectum 70 and throat 13). None of the throat isolates was PPNPG and only 3% were CMRNG. Strains isolated from the rectum were 14% PPNPG and 46% CMRNG, which is highly significant.

General NG susceptibility evolution (table 1), is presented in three periods: 1985–6, 1988, and 1995–6. At present we have not detected resistance to an extended spectrum of cefalosporins (1995–9). Only one strain showing decreased susceptibility to ciprofloxacin and ofloxacin was found (MIC = 0.5 µg/ml) in 1996. From 1985 to 1999 more than 50% of isolates were resistant to penicillin with changes in PPNG (decreasing) and CMRNG (increasing).

### Table 1  Susceptibility to antimicrobial agents in isolates of *N gonorrhoeae*

<table>
<thead>
<tr>
<th>Agents</th>
<th>MIC (µg/ml)</th>
<th>Number and % of means</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985–6 (507)</td>
<td>0.008–&gt;128</td>
<td>125</td>
</tr>
<tr>
<td>1988 (72)</td>
<td>0.032–128</td>
<td>0.125</td>
</tr>
<tr>
<td>1995–5 (81)</td>
<td>0.001–128</td>
<td>0.125</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985 (507)</td>
<td>0.008–2</td>
<td>0.06</td>
</tr>
<tr>
<td>1988 (72)</td>
<td>0.016–0.5</td>
<td>0.125</td>
</tr>
<tr>
<td>1995–6 (81)</td>
<td>0.001–0.5</td>
<td>0.125</td>
</tr>
<tr>
<td>Cefuroxime</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985–6 (81)</td>
<td>0.001–0.008</td>
<td>0.125</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985–6 (507)</td>
<td>0.002–0.016</td>
<td>0.004</td>
</tr>
<tr>
<td>1995–6 (81)</td>
<td>0.001–0.032</td>
<td>0.125</td>
</tr>
<tr>
<td>Ofloxacin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985–6 (81)</td>
<td>0.001–0.008</td>
<td>0.125</td>
</tr>
<tr>
<td>Tetracycline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985–6 (507)</td>
<td>0.063–2</td>
<td>4</td>
</tr>
<tr>
<td>1995–6 (81)</td>
<td>0.063–2</td>
<td>4</td>
</tr>
<tr>
<td>Minocyclin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985–6 (81)</td>
<td>0.032–2</td>
<td>0.125</td>
</tr>
<tr>
<td>Erythromycin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985–6 (507)</td>
<td>0.032–2</td>
<td>0.125</td>
</tr>
<tr>
<td>1995–6 (81)</td>
<td>0.032–2</td>
<td>0.125</td>
</tr>
<tr>
<td>Azithromycin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985–6 (81)</td>
<td>0.016–2</td>
<td>0.125</td>
</tr>
<tr>
<td>Spectinomycin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985–6 (507)</td>
<td>2–16</td>
<td>16</td>
</tr>
<tr>
<td>1995–6 (81)</td>
<td>2–16</td>
<td>16</td>
</tr>
</tbody>
</table>

### Comment

Gonorrhoea decreased drastically between 1991 and 1992 in heterosexual, MSM, and also in women, in Buenos Aires. A great deal of information directed at AIDS prevention has been developed. Unfortunately, there is no clear demonstration of a significant improvement in safe sexual behaviour, so the decrease in the incidence of gonorrhoea must be explained by other factors, most probably access to very efficient treatment.

It is necessary to develop a geographical targeted intervention in order to identify the residual clusters and to reduce incidence in MSM. Also the sensitivity of the rectal isolates of NG shows a very peculiar profile.

We have increased the drug sensitivity surveillance in order to detect any potential appearance of NG with decreased susceptibility to the fluoroquinolones, and/or to the extended spectrum cephapodoxin resistance, absent in this region till now.

This work was supported by a grant (B22 1998–2000) of Ciencia y Tecnología, Universidad de Buenos Aires.

Contributors: AF conducted the laboratory group for microbiology and drug sensitivity for *Neisseria gonorrhoeae*, SA, and CV assisted in the research; RC and LB were involved with the primary care; FM was responsible for quality control; RAAt analysed the data, epidemiology of STD, and prepared the manuscript. He is a member of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).

ANGELA FAMIGLIETTI

S D GARCIA

C A DE MIER

Clinical Microbiology Division, Department of Clinical Biochemistry, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina

R CASCO

L BELL

STD Service, Faculty of Medicine, Hospital Nacional de Clínicas José de San Martín, Universidad de Buenos Aires

F MARCENAC

C VAY

Clinical Microbiology Division, Department of Clinical Chemistry, Faculty of Pharmacy and Biochemistry, University of Buenos Aires

RA DE TORRES

Faculty of Pharmacy and Biochemistry, University of Buenos Aires

Correspondence to: Dr RA de Torres, 1113 Ciudad de Buenos Aires, Facultad de Farmacia y Bioquímica, Junín 956 4 Piso, Argentina detorres@fiby.uba.ar


Angela Famiglietti, S D Garcia, C A de Mier, R Casco, L Belli, F Marcenac, C Vay and R A de Torres

*Sex Transm Infect* 2001 77: 142
doi: 10.1136/sti.77.2.142

Updated information and services can be found at:
http://sti.bmj.com/content/77/2/142

These include:

**References**
This article cites 3 articles, 1 of which you can access for free at:
http://sti.bmj.com/content/77/2/142#BIBL

**Email alerting service**
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

**Topic Collections**
Articles on similar topics can be found in the following collections

- Gonorrhoea (806)
- Drugs: infectious diseases (3182)
- General practice / family medicine (210)
- Clinical diagnostic tests (279)
- Health education (960)
- Informed consent (55)

**Notes**

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/