The practice of STI treatment among chemists and druggists in Pokhara, Nepal

Chemists and druggists working in “medical shops” play a significant part in the treatment of sexually transmitted infections (STIs) in resource poor countries.1 In some settings, chemists and druggists are consulted for first line treatment of STI symptoms more often than hospitals and clinics designed specifically to service such clients.1 Recent unpublished data from Pokhara, Nepal, suggest that in up to 80% of cases, treatment provided by chemists and druggists was inappropriate or incomplete.2 We report here on the quality of STI case management among a random sample of chemists and druggists from the 75 medical shops in Pokhara Municipality Area, Nepal.

Chemists and druggists working in all Pokhara medical shops, 65% of whom had received previous training in the national standard case management guidelines,3 based on WHO syndromic algorithms,3 were trained and motivated to initiate a register of all STI client visits and their treatment. Registry data from January to December 1999 were reviewed. Thirty seven registered medical shops were randomly selected for visits using the simulated STD patient (SCM) presenting 22 urethral discharge (UD) and 15 vaginal discharge (VD) scenarios.

Of the 6374 STI cases (68% female, 32% male), 22% presented with urethral discharge, 31% with vaginal discharge, 21% with genital ulcer disease, and 26% with pelvic inflammatory disease. Seventy per cent of STI shop clients were making their first contact for care, while 14% were coming to buy STI drugs with a prescription from a private clinic and 16% from a government facility.

Based on SCM visits, only 24% of shops dispensed the correct medication and dosage for treatment of UD and VD, as specified in the national guidelines. Frequency of dispensing either an overdose or an incomplete dosage of the correct medication was the same (both 5%). In 43% of cases, chemists and druggists offered treatment that was incompatible with national guidelines, including drugs not meant for UD or VD treatment. Finally, in 22% of cases no medication was dispensed (fig 1). While over 95% of chemists and SCM clients were made to feel welcome, given a private consultation, and were asked about their health history, risk counselling was conducted only 57% of the time, partner notification occurred in 43% of cases, and condom use was promoted in only 35% of cases.

Seventy per cent of clients visiting medical shops for STI treatment in Pokhara Municipality Area in 1999 were there for first line treatment—findings in agreement with a recent study conducted in Ghana, which found that over 60% of STI clients came to pharmacies without a prescription.4 Although positive privacy and welcoming practices make medical shops a valuable outlet for STI treatment, only one quarter of chemists and druggists in Pokhara Municipality Area correctly dispensed medication for the treatment of UD or VD. While these data do not permit analysis of whether trained versus untrained providers were better at prescribing practices, it is clear that training efforts need to be expanded and intensified to improve STI control in this region.

Acknowledgements

This study received funding from the University of Heidelberg STD/HIV Project, Kathmandu, Nepal, which is funded by the European Union (EU) (B76211.97/044). There are no conflicts of interest.

The authors would like to thank Mr Bishwa Banjhu Banjalyal, coordinator for the NCASC program in Pokhara, for his help in collecting the reports from each of the 75 medical halls, the Gandaki Zonal Branch of the Nepal Chemist and Druggists Association (NCDA), Pokhara, and the Nepal Chemist and Druggists Association, Central Office, Kathmandu, for their cooperation, and all chemists and druggists in Pokhara who participated in the training, data collection, and study.

Contributors

KPB designed the study, oversaw data collection, and conducted statistical analysis; PC acted as clinical advisor for the study.

K P Bista, P Chaudhary
NCASC/UoH STD/HIV Project, Teku, Kathmandu, Nepal

T E Slanger, M H Khan
Department of Tropical Hygiene and Public Health, University of Heidelberg Medical Faculty, Heidelberg 69120, Germany Correspondence to: Dr Slanger; tracy.slanger@urz.uni-heidelberg.de

References

1 Zeed OH. Provision of care for patients with sexually transmitted diseases in Pokhara, Nepal. A research report for the degree of Postgraduate Master of Science in Community Health and Health Management in Developing Countries offered by the University of Heidelberg, Germany, May-June, 1996.

Hepatitis, syphilis, and HIV sentinel surveillance in Mongolia 1999–2000

Mongolia has undergone healthcare modifications because of political changes resulting from the dissolution of the former Soviet Union. Dramatic increases in unemployment, alcoholism, commercial sex, homelessness, and sexually transmitted infections (STIs) have occurred.1 There has been rapid spread of HIV infection in neighbouring countries. Mongolia also has a high prevalence of hepatitis B. Although the Mongolian ministry of...
health is eager to perform surveillance for STIs, including viral hepatitis, resources for collection, storage, and testing of specimens are meagre. We evaluated the utility of a filter paper blood collection technique for determining rates of HIV, syphilis, and viral hepatitis B and C in this resource limited setting.\footnote{The study was approved by the institutional review boards at the University of Alabama at Birmingham and the Mongolian ministry of health. Volunteers including commercial sex workers, itinerant traders, homeless people, and attendees at the STI clinic were sampled in Ulaanbaatar, Mongolia. All subjects completed a questionnaire and provided blood via a finger stick.}

Blood was collected as filter paper spots using Schleicher and Schuell (Keene, NH, USA) no 903 filter paper following the National Committee for Clinical Laboratory Standards protocol. Samples were dried, stored at room temperature for the duration of the 2 week visit to Mongolia, and then refrigerated upon arrival to the testing laboratory. For every blood spot, a\footnote{For every blood spot, a} inch disc containing about 5 µl of serum was punched out of the filter paper. Disc samples were eluted in 400 µl of phosphate buffered saline for samples to be tested for HBsAg and HCV Ab, 200 µl of specimen diluent solution for samples to be tested for HIV, or 100 µl of 0.9% saline solution for rapid plasmid reagin (RPR) and FTA-ABS tests.

A total of 593 volunteers were enrolled. The prevalence of infection using the filter paper technique was 9% for syphilis, 10.5% for hepatitis C, and 21.6% for chronic hepatitis B. The prevalence of hepatitis C was higher among homeless people compared to other risk groups (21.1% vs 5.2–9.7%) (table 1). For 128 volunteers with chronic hepatitis B, 86.9% of them (67.2%) occurred in STI clinic attendees. Eleven individuals had reactive tests for syphilis. Three individuals had repetitively reactive ELISAs for HIV; however, none was confirmed by western blot. A total of 232 volunteers (39.1%) reported use of condoms routinely. 55/393 (9.2%) had a history of blood transfusion, and 9/593 (1.5%) reported use of injecting drugs. Neither condom use, number of sexual partners, nor a history of blood transfusion were predictors of hepatitis B infection. No correlations were found between the prevalence of hepatitis C virus infection and the use of drugs or history of blood transfusions.

We found the filter paper technique for blood collection to be a reliable and useful method for serological studies in resource poor areas where blood collection and/or specimen transport may be difficult. Specimens were easily collected, stored, and transported before testing. Rates of viral hepatitis were high but rates of syphilis and HIV unexpectedly low. Future prevalence testing using this method will be able to determine trends of these communicable diseases in Mongolia.

Acknowledgements

This project was funded through the World AIDS Foundation (WAF No 175 98–054). This work was presented in part at the 40th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC Meeting) in Toronto, Ontario, Canada on September 2000.

Contributors

IT helped design the project, organised and participated in specimen collection, performed data entry and analysis, and drafted the manuscript. MA organised and facilitated the study in Mongolia and reviewed the manuscript. SV helped design the project, reviewed the data analysis and manuscript preparation. JW processed laboratory specimens for HIV testing and mentored IT in same, reviewed manuscript. EH processed laboratory specimens for syphilis testing and mentored IT in same, reviewed manuscript. JS helped design project, was the principal mentor for IT for all aspects of the project, and assisted in writing the manuscript.

Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA

M Altankhuu

The Public Health Institute, Ulanbataar, Mongolia

S Verman

Division of Geographical Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA

J W Gnam, E H Hook, J Schwebke

Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA

Correspondence to: Dr Jane Schwebke, University of Alabama at Birmingham, 703 19th St South, Zeigler Research Building #239, Birmingham, AL 35294-0007, USA; schwebke@sab.ual.edu

*Current address: Hospital Angeles Lomas, Villada de la Barranca s/n, Consultorio # 430, Cal Valle de las Palmas, CP 52763 Huixquilucan, Edo de Mexico

Reference

Accepted for publication 7 March 2002
Condom access does not ensure condom use: you’ve got to be putting me on

Approximately 15 million incident cases of sexually transmitted infections (STIs) occur in the United States each year. These figures are troubling given the availability of primary prevention measures that sexually active people can use to avoid unprotected intercourse, including latex condoms. Although considerable attention has focused on making condoms widely available, surprisingly little research has examined whether condom availability is sufficient to ensure condom use. We recruited a convenience sample of 98 male students through advertisements posted on two University campuses to evaluate sexual risk taking behaviour. Men were required to be aged 18–29 years, full time students, and to have used condoms for ≥3 episodes of vaginal intercourse. After providing informed consent, eligible men participated in a standardised interview about their experiences with condom use. The study was approved by the institutional review board of Emory University.

The 98 respondents averaged 22 years of age (SD 3). Forty six (65%) were white, 27 (28%) were African-American, five (5%) were Asian American, and two (2%) were of mixed race. Men reported a mean of 18 lifetime sex partners (median 6, range 1–190); most (96%) reported having vaginal intercourse during the previous year. Eighty five men (87%) used condoms because of concern about acquiring STIs; of these, most men were also concerned about pregnancy. However, 73 men (74%) reported having vaginal sex without a condom when they “felt one should have been used” to protect against pregnancy and/or infection (median lifetime number of times without condom; range 1–450). Among men acknowledging unsafe sex (52%) admitted ever having unprotected intercourse despite ready access to condoms “within the same room” (median 5 times; range 1–300). Overall, condoms, although readily accessible, were not used in more than one third (37%) of lifetime acts of intercourse where risk of pregnancy or infection was perceived (as assessed in 2254 acts). Reasons for men’s most recent failure to use condoms, despite accessibility, included unwillingness to interrupt foreplay (48%), fear of loss of sensation or erection (17%), and ineptitude (17%).

Among all 98 participants, 58 men (59%) also reported occasions in which they intended to use a condom, only to find that they did not have a condom with them. At the most recent occasion when condoms were not available, 34 men (58%) chose to have unprotected intercourse. The remaining 24 men (42%) elected to abstain from intercourse and instead participated in non-penetrative sexual activities posing less risk for STI acquisition, or waited until a condom could be obtained.

Despite the small size and self-selected nature of our population, these findings point to formidable barriers to “getting sex”, at least in this heterosexual setting. Condom availability did not ensure condom use, even when condoms were needed. Similarly, the lack of availability of condoms did not deter most men from having intercourse. Avoiding sexual intercourse with an infected partner is the most effective way to prevent STIs. However, for sexually active people, condoms can only reduce the risk of infection when they are both readily available and actually put on.

Acknowledgement

Support for this work was provided in part with funds from the Society of the Scientific Study of Sexuality.

IRB approval: obtained from Emory University, October, 1993.

Conflict of interest: Neither author has a conflict of interest.

Both authors have made substantial contributions to the intellectual content of the paper. DW was responsible for the conception and design of the study, locating funding for the study, acquisition of study data, analysis and interpretation, and drafting and revision of the research letter; MS was involved with the conception and design of the analysis and interpretation and drafting and revision of the research letter.

Contributors

Both authors have made substantial contributions to the intellectual content of the paper. DW was responsible for the conception and design of the study, locating funding for the study, acquisition of study data, analysis and interpretation, and drafting and revision of the research letter; MS was involved with the conception and design of the analysis and interpretation and drafting and revision of the research letter.

References

7 Requena L, Gallucci D, Peloquin C, et al. Men’s most recent failure to use condoms, despite accessibility, included unwillingness to interrupt foreplay (48%), fear of loss of sensation or erection (17%), and ineptitude (17%).

8 Among all 98 participants, 58 men (59%) also reported occasions in which they intended to use a condom, only to find that they did not have a condom with them. At the most recent occasion when condoms were not available, 34 men (58%) chose to have unprotected intercourse. The remaining 24 men (42%) elected to abstain from intercourse and instead participated in non-penetrative sexual activities posing less risk for STI acquisition, or waited until a condom could be obtained.

9 Despite the small size and self selected nature of our population, these findings point to formidable barriers to “getting sex”, at least in this heterosexual setting. Condom availability did not ensure condom use, even when condoms were needed. Similarly, the lack of availability of condoms did not deter most men from having intercourse. Avoiding sexual intercourse with an infected partner is the most effective way to prevent STIs. However, for sexually active people, condoms can only reduce the risk of infection when they are both readily available and actually put on.

10 Accepted for publication 7 March 2002

Downloaded from http://sti.bmj.com/ on June 19, 2017 - Published by group.bmj.com

PostScript

Some authors found that the longest delay was the time at the laboratory as in case 1. (The mother was negative in the first trimester of pregnancy, became positive in the late third trimester, but the results came too late—after delivery.) Improved laboratory services will solve this problem.

Patients have often been treated by non-venerologists without contact tracing, like the father of case 1, and his diagnosis and therapy were not adequate. With regard to confidentiality patients often receive non-professional treatment or undergo self treatment.

Unfortunately, the difficulty in dealing with patients having a poor educational background and insufficient sexual knowledge results in the impossibility to find all the sources of infection. The parents of patient 2 did not seek medical help, although the father had penis lesion. The mother did not visit a doctor after she was pregnant. Even her labour was at home, as it was in the mother of case 4.

Another big problem is prostitution, which is not legal and cannot be controlled in our country. The mothers of patients 3 and 4 were prostitutes, who did not seek medical assistance at all.

More than half of our patients are unable to indicate the name or address of the contacts (the father of case 1 and the mothers of cases 2, 3, 4), thus demonstrating the high frequency of occasional sexual contacts and the lack of protective measures.

The government health system has existed in Bulgaria for more than 50 years but social and economic changes require a new insurance system and new approaches concerning STDs. The system for notification of STD patients should be improved in order to ensure a higher confidentiality. The reported cases also emphasise the necessity of cooperation between dermatologists, obstetricians, neonatologists, and paediatricians.
The Department of Health pilot study on “Opportunistic screening for genital chlamydia infection in Portsmouth and Wirral” ran for a year up to October 2000. During that study, the standard adopted for reporting chlamydial infection included a repeat LCR test on all first catch urine samples that were initially LCR positive. Samples giving discrepant LCR results were further tested by Roche Cobas (PCR) polymerase chain reaction. Chlamydia LCR urine screening, with repeat LCR/PCR testing of positives, has continued in the Wirral pilot area and is also being used in other research projects locally.

Following the original device correction, we continued to carry out a repeat LCR but additionally included a PCR test on all initially positive LCR urine samples. Analysis of our data (table 1) suggests that compared to the baseline (satisfactory) performance during the Wirral pilot there was indeed a noticeable reproducibility problem when the device correction notice was issued. Since then, however, the LCR performance has improved gradually to be at least as good as in the pilot period.

The MDA alert properly deals with kit performance in generating a valid test result. However, this incident also prompted us to consider the wider issues of repeat testing for confirmation of chlamydial diagnosis.

We have recently also examined the reproducibility of our Roche Cobas chlamydia PCR results and are concerned that found that of 282 initially PCR positive urine samples only 237 gave repeat PCR positive results. We sense that there may be a mistaken view adopted by some clinicians that all nucleic acid amplification tests (NAAT) are infallible for sensitivity and specificity. It is important that patients should be made aware (as we did during the screening pilot) that no test is 100% accurate. Problems of reproducibility have been reported for both LCR and PCR. We recognise the dilemma in repeat testing of samples that give positive reactions in chlamydia NAATs; on the one hand, a low organism load in the specimen makes repeat positivity a matter of statistical chance of retesting a portion with detectable numbers—so cases will be missed. On the other hand, repeat confirmation ensures a more robust diagnosis is made which is so important in the light of the major implications of a chlamydia diagnosis for those who consider themselves well but decide to take a screening test. We would welcome debate on the need for retesting or independent confirmation of positive chlamydia NAATs and support the need for continuous monitoring of all test results to ensure their consistent optimal performance.

Table 1

<table>
<thead>
<tr>
<th>No of urines</th>
<th>PCR+</th>
<th>PCR+/-</th>
<th>PCR- (a)</th>
<th>PCR- (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial LCR positive</td>
<td>960</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeat LCR:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>883 (92%)</td>
<td>*****</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Equivocal (0.5–0.99)</td>
<td>12 (1.3%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>65 (6.8%)</td>
<td></td>
<td>13</td>
<td>50</td>
</tr>
<tr>
<td>Initial LCR positive</td>
<td>134</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeat LCR:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>74 (55%)</td>
<td></td>
<td>70</td>
<td>1</td>
</tr>
<tr>
<td>Equivocal (0.5–0.99)</td>
<td>18</td>
<td></td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Negative</td>
<td>42 (31%)</td>
<td></td>
<td>6</td>
<td>36</td>
</tr>
<tr>
<td>Initial LCR positive</td>
<td>121</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeat LCR:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>95 (79%)</td>
<td></td>
<td>90</td>
<td>3</td>
</tr>
<tr>
<td>Equivocal (0.5–0.99)</td>
<td>2 (1.7%)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>24 (19.8%)</td>
<td></td>
<td>5</td>
<td>19</td>
</tr>
<tr>
<td>Initial LCR positive</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeat LCR:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>87 (96.6%)</td>
<td></td>
<td>82</td>
<td>3</td>
</tr>
<tr>
<td>Equivocal (0.5–0.99)</td>
<td>7 (7.8%)</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Negative</td>
<td>2 (2.2%)</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

(a) Inhibitory, (b) insufficient.

References

Accepted for publication 7 March 2002

NOTICES

International Herpes Alliance and International Herpes Management Forum

The International Herpes Alliance has introduced a website (www.herpesalliance.org) from which can be downloaded patient information leaflets. Its sister organisation the International Herpes Management Forum (website: www.IHMF.org) has launched new guidelines on the management of herpesvirus infections in pregnancy at the 9th International Congress on Infectious Disease (ICID) in Buenos Aires.

Pan-American Health Organization, regional office of the World Health Organization

A catalogue of publications is available online (www.paho.org). The monthly journal of PAHO, the Pan American Journal of Public Health, is also available (subscriptions: pubsvc@tsp.sheridan.com).

10th International Symposium on Human Chlamydial Infection

16–21 June 2002, in Antalya, Turkey

The scientific programme will encompass the breadth of chlamydial research from clinical and epidemiological studies to molecular and cell biology of all species of Chlamydia. Further details: Professor A Demir Serter, Department of Clinical Microbiology and Infectious Diseases, Ege University, Faculty of Medicine, 35100 Bornova, Izmir, Turkey (fax: 90 232 343 71 30; email: 15HCiX@ista.ucsf.edu).

10th International Congress on Behçet’s Disease

27–29 June 2002, Berlin

Further details: Professor Ch Zouboulis (email: zoubberec@zedat.fu-berlin.de).

20th World Congress of Dermatology

1–5 July 2002, Paris

Further details: P Fournier, Colloquium, 12 rue de la Croix St Faubin, 75011 Paris, france (tel: +33 1 44 64 15 15; fax: +33 1 44 64 15 16; email: p.fournier@colloquium.fr; website: www.derm-wcd-2002.com).

18th Congress on Sexually Transmitted Infections

IUSTI-Europe 2002

12–14 September 2002, Vienna, Hofburg Congress Center,

Chair of the Congress, Director of the European Branch of IUSTI: Angelika Stary, MD (Austria)

Further details: Angelika Stary, c/o Administrative and Scientific Secretariat, Vienna Academy of Postgraduate Medical Education and Research, Alser Strasse 4, A-1090 Vienna, Austria (tel: (+43 1) 405 13 83 13; fax: (+43 1) 407 82 74; email: iusti 2002@medacad.org; website: www.iusti-europe-2002.org).
Resolution of the recent performance problem of Abbott LCx *Chlamydia trachomatis* assay. Issues of repeat testing for confirmation of chlamydial infection

H Mallinson, J Hopwood and K Mutton

Sex Transm Infect 2002 78: 225-226
doi: 10.1136/sti.78.3.225-a

Updated information and services can be found at: http://sti.bmj.com/content/78/3/225.2

These include:

References

This article cites 2 articles, 2 of which you can access for free at: http://sti.bmj.com/content/78/3/225.2#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/