Cost effectiveness of screening for *Chlamydia trachomatis*: a review of published studies

E Honey, C Augood, A Templeton, I Russell, J Paavonen, P-A Mårdh, A Stary, B Stray-Pedersen

Objective: Screening for *Chlamydia trachomatis* in the lower genital tract may contribute to the prevention of pelvic inflammatory disease in women. The purpose of this review was to critically appraise, and summarise studies of the cost effectiveness of screening for *C trachomatis*.

Methods: A literature search was conducted on Medline and in Health Star from 1990–2000. Keywords were *C trachomatis*, screening, cost effectiveness. Bibliographies of reviewed articles were also searched. The population studied was asymptomatic sexually active women under 30 years of age in a primary care setting. The intervention assessed was screening for lower genital tract infection with *C trachomatis* and the outcomes studied were cases of *C trachomatis* detected, cases of PID prevented, and associated costs. Studies were assessed using the Drummond criteria for economic evaluations. They were assessed qualitatively as they were too heterogeneous to allow quantitative analysis.

Results: 10 studies were included. All were modelled scenarios and all found screening to be more cost effective than simply testing symptomatic women, although all were based on probabilities that were assumed. Six of the studies focused on DNA based testing, three of them using urine. The models showed screening to be cost effective at prevalences of 3.1–10.0%, and cost saving (overtesting symptomatic women) at a prevalence as low as 1.1%, if age was used as a selection factor and DNA based tests were used in urine samples.

Conclusions: At the prevalence of infection expected in the target population, all studies suggest screening is cost effective. However, the assumptions used in the models have been difficult to confirm and there is a need for more data, particularly on the risk of complications in women with asymptomatic lower tract infection.
Cost effectiveness of screening for *C trachomatis*

RESULTS

Ten economic evaluations and one RCT were identified. The RCT demonstrated that screening for *C trachomatis* reduced the subsequent risk of PID, odds ratio 0.44 (0.2 to 0.9). This RCT is the strongest available evidence that screening for *C trachomatis* is effective and is described as grade I evidence. All other studies in this review were the result of economic modelling and not primary data collection. In five of the economic evaluations the prevention of PID was the measure of benefit assessed, while in the remainder *C trachomatis* detected or cured was the measure. The agreement between the two reviewers (EH and CA) over the methodology of the economic evaluations had a kappa coefficient of 0.76 (p < 0.001). Three of the economic evaluations were by the same group of authors. Two of the studies scored poorly (less than 5/20). Although they are included in table 2, they were excluded from further analysis.

In addition a further study was identified. This economic evaluation is set in the Netherlands and focuses on opportunistic screening of both men and women in general practice. The age range within the evaluation is 13–65 years. These two factors meant it did not meet the inclusion criteria for the systematic review. It is none the less an interesting evaluation as it models the possible effect of screening this population for a period of 10 years, and demonstrates that a screening programme would have to run for a minimum of 5 years to create any savings.

The studies are summarised below.

Howell et al asked which is the most cost effective strategy, screening women under 25 using LCR (ligase chain reaction) on urine, universally testing women or universally treating women? The effectiveness of these strategies was calculated hypothetically using data from a cohort study conducted in a similar population. The probabilities used for the consequences of untreated chlamydial infection were based on evidence from military clinic data and from a literature review.

The sensitivity of the test used was estimated from the literature. The costs used in this model reflect military health costs and loss of productivity to the military as well as the expense of losing trainees. The outcome measure was PID prevented at 1 year. In their model a hypothetical cohort of 10 000 women with an infection prevalence of 9.2% was screened. They found that no screening would result in 276 cases of PID and the most effective strategy was screening only women under 25 which prevented 222 cases of PID and saved US$15 (£9.7) for each case prevented. This is a reduction of 80% in PID and does not correlate with the Scholes study. This study was designed from a military perspective and as such the results may not apply generally.

Howell et al asked if asymptomatic women under 30 in a family planning clinic (FPC) were to be screened, which would be the most cost effective test—cell culture, EIA (enzyme immunoassay), DNA probe, LCR, or PCR (polymerase chain reaction) either on urine or endocervical samples. The effectiveness of the strategies was based on a prevalence study conducted in the same population. The probabilities used in this review were derived from the literature and are based on cohort studies. The costs included are direct costs and the weighted costs of sequelae. The outcome measure was PID. The study was modelled on a cohort of 18 000 women, with a prevalence of infection of 6.5%. The cost if there was no screening was $2.2 million (£1.42 million) and 497 cases of PID; screening using EIA prevented 240 cases of PID and saved $887 000 (£571 577) over no screening. However, nucleic acid amplification based tests (NAA) used on urine prevented 306 cases of PID and saved an additional $287 000 (£184 935) over EIA. The use of a NAA based test remained the most cost effective method of screening with a prevalence as low as 3.2%. The most cost effective scenario was a NAA based test used on a cervical swab in those women requiring a pelvic examination and on urine in those who did not.

Howell et al asked if it was more cost effective to screen asymptomatic women in a FPC using the Centre for Disease Control and Prevention (CDC) criteria, or to screen all women under 30 or to universally screen all women when compared to no screening. The effectiveness of the strategies was determined as part of a cohort study set in the family planning clinics. Certain variables used in the model were derived from primary data collection at the time of screening—for example, physician time. The probabilities of consequences among women with untreated chlamydial infection were derived from a review of cohort studies in the literature. The costs used

Table 1 Drummond checklist for the appraisal of economic evaluations

<table>
<thead>
<tr>
<th>Drummond list</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Was a well designed question asked in an answerable form?</td>
<td>2</td>
</tr>
<tr>
<td>Was a comprehensive description of the competing alternatives given?</td>
<td>2</td>
</tr>
<tr>
<td>Was there evidence that the programmes effectiveness had been established?</td>
<td>2</td>
</tr>
<tr>
<td>Were all the important and relevant costs and consequences for each alternative identified?</td>
<td>2</td>
</tr>
<tr>
<td>Were costs and consequences measures accurately in appropriate physical units?</td>
<td>2</td>
</tr>
<tr>
<td>Were costs and consequences valued credibly?</td>
<td>2</td>
</tr>
<tr>
<td>Were costs and consequences adjusted for differential timing?</td>
<td>2</td>
</tr>
<tr>
<td>Was an incremental analysis of costs and consequences of alternatives performed?</td>
<td>2</td>
</tr>
<tr>
<td>Was a sensitivity analysis performed?</td>
<td>2</td>
</tr>
<tr>
<td>Did the presentation and discussion include all issues of concern to users?</td>
<td>2</td>
</tr>
</tbody>
</table>

18 More information available online.
Table 2 Details of all studies including the allocated Drummond score

<table>
<thead>
<tr>
<th>Author/date</th>
<th>Type of study</th>
<th>Test</th>
<th>Outcome</th>
<th>Case of PID prevented</th>
<th>Sensitivity analysis</th>
<th>Score on Drummond criteria (max 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Howell et al (1999)</td>
<td>Model using real data from records and previous cohort studies</td>
<td>LCR urine</td>
<td>Age based testing or universal treatment in high prevalence groups</td>
<td>233 cases of PID prevented saving of $800/PID</td>
<td>Yes, varied prevalence, cost, uptake and sensitivity</td>
<td>16</td>
</tr>
<tr>
<td>2 Howell et al (1999)</td>
<td>Model 7 strategies to decide on test</td>
<td>DNA amplification in urine or cervical swab in asymptomatic women less than 30 years.</td>
<td>306 cases of PID prevented saving $3689/PID</td>
<td>Yes, varied prevalence, cost, uptake and sensitivity</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>3 Howell et al (1998)</td>
<td>Cost effectiveness</td>
<td>Urine based NAA</td>
<td>Age based screening at less than 10.2% prevalence. Universal screening over 10.2% prevalence. Both in FPC.</td>
<td>85 cases of PID prevented saving $3585/PID</td>
<td>Yes, varied prevalence, cost, uptake and sensitivity</td>
<td>17</td>
</tr>
<tr>
<td>4 Paavonen et al (1998)</td>
<td>Model</td>
<td>NAA on urine</td>
<td>Cost effective in low prevalence (3.9%) population using DNA based test assuming 90% return rate</td>
<td>50% of sequelae prevented cost $45 per case of Ct*</td>
<td>Yes, extensive</td>
<td>15</td>
</tr>
<tr>
<td>5 Marazzo et al (1997)</td>
<td>Cross sectional study to provide data</td>
<td>EIA in several settings</td>
<td>Selective screening in GUM. Universal screening in FPC. Both with EIA.</td>
<td>44 674 cases of Ct* prevented a saving of $987 per case 47 025 cases prevented a saving of $667</td>
<td>Yes</td>
<td>18</td>
</tr>
<tr>
<td>6 Genc and Mardh (1996)</td>
<td>Model</td>
<td>NAA</td>
<td>Cost effective in asymptomatic women in FPC with DNA based test at 6% prevalence, positives treated with azithromycin.</td>
<td>NA</td>
<td>None was performed</td>
<td>12</td>
</tr>
<tr>
<td>7 Sellors et al (1992)</td>
<td>Model</td>
<td>EIA</td>
<td>Selective screening using set criteria in low prevalence populations. Effective using EIA.</td>
<td>NA</td>
<td>Yes</td>
<td>17</td>
</tr>
<tr>
<td>8 Buhaug et al (1990)</td>
<td>Model</td>
<td>Culture</td>
<td>Cost effective in GP in women <24 $1477 per case of PID prevented every 2 years</td>
<td>No</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Excluded Cohen et al (2000)</td>
<td>Model</td>
<td>EIA</td>
<td>School based screening was cost effective.</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chlamydia trachomatis
were direct costs and were calculated from the primary study. The costs of the sequelae were derived from other models. The women were tested with a NAA based test, using an endocervical swab if a pelvic examination was indicated and urine if it was not. The outcome measure was PID prevented. They found screening all women under 30 would prevent the greatest number of cases of PID. This would still offer a saving over not screening even when the prevalence of infection was as low as 1.1%. However it was not the most effective strategy as a large number of unnecessary tests are performed. In their sensitivity analysis if the prevalence increased from 6.6% to 10.0% then universal screening became the most cost saving strategy. Paavonen et al asked if screening asymptomatic women using urine and NAA based tests in a FPC would be more cost beneficial than the current practice of not screening, but still testing symptomatic women with EIA and DFA confirmation on an endocervical sample. The effectiveness of the scenario was based on a pilot study of screening. The probability used for participation in the screening programme was based on the participation rate in the “cervical smear” screening programme in Finland. The diagnostic test performance was perhaps overestimated but this is explicitly stated. The probabilities of the consequences of chlamydial infection were determined from published cohort studies and expert opinion and are based on women who are culture positive for C trachomatis. The costs included are direct costs only but these are explicitly stated, credible, and were discounted at 4% per year. The outcome measure was C trachomatis detected. The cost per case detected was $46 (£29.6) if participation was 75% compared to a cost of $50 (£32.2) if no screening was performed. The net saving in the population, with a prevalence of C trachomatis infection of 3.5%, was $3.5 million (£2.25 million). The threshold prevalence in this study was 3.9% but savings increased with prevalence. This study has added value in that it examined the health benefits of C trachomatis screening. Compared with no screening, screening and treating with the antibiotic azithromycin would result in 62% more cured cases. Compared with no screening, screening and treating with C trachomatis detected. The selective screening criteria were cervicitis, intermenstrual bleeding, discharge, or urinary frequency. Using these criteria they tested 55.3% of women and detected 83.3% of cases. On the basis of a new sex partner in the previous year 75.4% of women were tested and 93.3% of cases detected. They demonstrated that, while costing less, selective screening detected less cases of C trachomatis. This conclusion may in part be influenced by the choice of EIA as a test. Buhaug et al asked if it was cost effective to screen asymptomatic young women for C trachomatis in general practice using culture of endocervical samples when compared with no screening. The effectiveness of the strategy was calculated from one follow up study. The probabilities of the consequences of chlamydial infection, on the performance of the selective screening were derived from the literature. The probabilities of outcomes of untreated chlamydial infections were derived from the literature. The costs used are the direct costs involved in the collection, analysis and treatment of screening and are explicitly stated. Furthermore the costs associated with the sequelae are not explained. The sequelae are estimated to occur 8 years in the future and the costs are discounted by 5% per year. A sensitivity analysis was conducted over the costs and probabilities of the consequences of chlamydial infection, on the performance of the selective screening and the threshold prevalence was calculated for each scenario. The outcome examined was C trachomatis detected. This was a cost minimising evaluation concentrating on costs saved rather than cases of C trachomatis detected. The selective screening criteria were cervicitis, intermenstrual bleeding, discharge, or urinary frequency. Using these criteria they tested 55.3% of women and detected 83.3% of cases. On the basis of a new sex partner in the previous year 75.4% of women were tested and 93.3% of cases detected. They demonstrated that, while costing less, selective screening detected less cases of C trachomatis. This conclusion may in part be influenced by the choice of EIA as a test. Buhaug et al asked if it was cost effective to screen asymptomatic young women for C trachomatis in general practice using culture of endocervical samples when compared with no screening. The effectiveness of the strategy was calculated from one follow up study. The probabilities of the consequences of untreated chlamydial infections were derived from the published literature. The outcomes and probabilities of untreated chlamydial infections were estimated from the published literature. It is striking in this study that there was the assumption that 95% of those with a positive test would come forward for treatment and this would be successful in 90%. The costs in this model include direct and indirect costs and seem appropriate by today’s standards but are perhaps high for 1990. The main outcome measure was PID prevented. The authors also modelled the effect of screening on anticipated PID and ectopic pregnancies. They found screening to be cost effective among 18–24 year olds with a prevalence of infection of 8.4% (range 3.5–13.4%). This review had added interest as the authors varied the prevalence and the consequences of infection, with age. It is also interesting, that even using culture, the most expensive method for the detection of C trachomatis, screening was still cost effective. Thus the method used to detect C trachomatis varied among the models. Six used an NAA based detection system, half of these in urine. Although now proposed as the gold standard, NAA testing is still not routinely offered in all settings. This review indicates that while nucleic acid amplification based tests can cost more than alternative tests their greater sensitivity makes their use more cost effective. In a screening scenario the relatively high false negative rates using non-NAA based tests may limit any longer term savings.
<table>
<thead>
<tr>
<th>Study ID</th>
<th>Consequences included</th>
<th>Probabilities (amongst uncured Ct* infection)</th>
<th>Test</th>
<th>Discounted</th>
<th>Cost effective at prevalence</th>
<th>Cost saved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Howell et al (1999)</td>
<td>PID, Chronic pelvic pain</td>
<td>30% (40% symptomatic)</td>
<td>LCR urine</td>
<td>3%</td>
<td>Age based testing less than 25 if prevalence less than 9% or universal treatment in high prevalence groups</td>
<td>$800/PID</td>
</tr>
<tr>
<td>2 Howell et al (1998)</td>
<td>PID, Chronic pelvic pain, Ectopic, Infertility, Urethritis, Epididymitis, Neonatal conjunctivitis and pneumonia</td>
<td>30% symptomatic</td>
<td>Comparing tests</td>
<td>3%</td>
<td>Age based in FPC if less than 30 years if less than 10.2 prevalence</td>
<td>$3585/PID</td>
</tr>
<tr>
<td>3 Howell et al (1998)</td>
<td>PID, Chronic pelvic pain, Ectopic, Infertility, Urethritis, Epididymitis, Neonatal conjunctivitis and pneumonia</td>
<td>30% (40% symptomatic)</td>
<td>Urine based NAA</td>
<td>3%</td>
<td>Age based in FPC if less than 30 years if less than 10.2 prevalence</td>
<td>$3585/PID</td>
</tr>
<tr>
<td>4 Paavonen et al (1998)</td>
<td>Among Ct* positives, PID, Infertility, Ectopic, Epididymitis, Neonatal conjunctivitis and pneumonia</td>
<td>60% (20% symptomatic)</td>
<td>NAA on urine</td>
<td>4%</td>
<td>Universal screening in FPC at 3.9% prevalence if uptake 75% using DNA based test assuming 90% return rate</td>
<td>$45 per case Ct* detected</td>
</tr>
<tr>
<td>5 Marazzio et al (1997)</td>
<td>PID, Infertility, Ectopic, Epididymitis, Neonatal conjunctivitis and pneumonia</td>
<td>15–40%</td>
<td>EIA in several settings</td>
<td>5%</td>
<td>Universal screening with EIA if prevalence greater than 3.1% in FPC</td>
<td>$1100/PID</td>
</tr>
<tr>
<td>6 Genc and Mardh (1996)</td>
<td>PID, Chronic pelvic pain, Ectopic, Infertility, Urethritis, Epididymitis, Neonatal conjunctivitis and pneumonia</td>
<td>Pooled probability of consequence</td>
<td>NAA</td>
<td>5–10%</td>
<td>Universal screening cost effective in asymptomatic women at FPC with DNA based test at 6% prevalence if treated with azithromycin</td>
<td></td>
</tr>
<tr>
<td>7 Sellors et al (1992)</td>
<td>Cervicitis, PID, Infertility, Ectopic</td>
<td>20% (3% of untreated Ct*)</td>
<td>EIA</td>
<td>5%</td>
<td>Selective screening using set criteria in low prevalence <7% populations with EIA effective</td>
<td></td>
</tr>
<tr>
<td>8 Buhaug et al (1990)</td>
<td>PID, Varied with age, Ectopic, Infertility</td>
<td>2.5% (20% of PID)</td>
<td>Culture</td>
<td>5%</td>
<td>Cost effective in general practice in women less than 24 every 2 years</td>
<td></td>
</tr>
</tbody>
</table>

Chlamydia trachomatis
The threshold population prevalence of C trachomatis over which the evaluations were cost effective varied from 3.1–10.0%. Screening can be cost saving at a prevalence as low as 1.1%, when age is used to select women and NAA based tests are used in urine samples, although the large numbers of unnecessary tests diminishes effectiveness. This variation in the threshold prevalence rate is explained by the very wide range of costs used in the models. It may also be explained by the decision in three evaluations not to include indirect costs. These costs, which are incurred by society and individuals, are important, although there is still much debate about their inclusion in an economic evaluation. In two studies azithromycin in a single dose was used to treat the infection. These studies had a threshold prevalence of 3.9% and 6.0% respectively. In the remainder doxycycline for 7 days was the standard treatment used. Both regimens have similar effectiveness but compliance is better with azithromycin. The probabilities of return for treatment and treatment failure ranged from 65–90% and 75–97% respectively, but at all these levels screening was still cost effective.

Incremental analysis was performed in six studies, demonstrating how much more one strategy cost over the next most effective strategy.

DISCUSSION
In this systematic review all the economic evaluations assumed de facto that screening for C trachomatis was effective and then went on to agree that screening asymptomatic women for C trachomatis is cost effective and indeed cost minimising over whatever scenario is currently offered. Medically this finding is unsurprising. The presumed consequences of lower genital tract infection with C trachomatis are PID, ectopic pregnancy, and infertility—all of which can be very expensive in terms of both healthcare costs and lost productivity. Economic modelling can provide quick, accurate, and robust answers where an exploration of potential outcomes can be undertaken using a sensitivity analysis. However, this is dependent on the probabilities entered being substantiated by strong evidence. All of the models appraised in this review suffered from a lack of strong evidence to support their assumptions and are vulnerable therefore to bias in their findings and conclusions.

For example, the models have used probabilities and assumptions for the consequences of untreated C trachomatis infection, which have been derived from a group of women who were culture positive for C trachomatis. The assumption is that being culture positive is the same as being positive in a NAA based test, which is unlikely in relation to bacterial load alone. None of the models have used primary data from a cohort of women who have been screened for C trachomatis using a sensitive diagnostic test and then followed up over time. None of the models including those published later used data derived from the Scholes study, the strongest evidence to date that screening is effective in preventing PID.

Although the models did conduct sensitivity analysis of prevalence rates, age groups, and types of screening, in only one of the studies did the researchers vary the uptake of screening. The other analyses were based on the presumption that the whole cohort accepted screening. However in the Scholes study, screening was accepted by only 64% and a similar finding was noted by Grun et al. It is of course possible that uptake may improve with the advent of urine based testing as well as self testing using vulval swabs. Clearly there is a need for much more data if the cost effectiveness of screening is to be successfully modelled. These data would best be provided in the context of well conducted clinical trials.

There is now evidence, albeit from only one RCT, that screening for C trachomatis is effective. One case of PID will be prevented for every 85 women screened; furthermore screening has been shown to reduce the rate of ectopic pregnancy within 1 year of introduction. However it is difficult to be certain that screening for C trachomatis has been solely responsible for the fall in ectopic pregnancies or for the reduction in women with PID seen in Sweden, as screening interventions will have both a primary and secondary preventive action. Any national screening programme will increase awareness among the people at risk as well as healthcare professionals and this alone may bring about change.

CONCLUSION
This systematic review of the cost effectiveness of screening young asymptomatic women for Chlamydia trachomatis suggests that screening is cost effective at the prevalence of chlamydial infection expected in the relevant population. However, the assumptions upon which the models have been based are not always derived from sound evidence, particularly with respect to the subsequent risk of PID in women testing positive using newer sensitive nucleic acid based diagnostic tests. Further unanswered questions relate to the prevalence and reinfection rates of C trachomatis after a screening programme has been established. There is an urgent need for more data derived from well conducted clinical trials to inform the discussion and help with national policies and recommendations.

ACKNOWLEDGEMENT
Project supported by EU Biomed Concerted Action Grant No: BMH4–98 3059.

Authors’ affiliations
E Honey, A Templeton, Department of Obstetrics and Gynaecology, University of Aberdeen, Forresotherhill, Aberdeen, AB25 2DD, UK.
C Augood, Department of Epidemiology and Population Sciences, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
I Russell, Department of Health Sciences, University of York, Heslington, York, YO1 5DD, UK.
J Paavonen, Department of Obstetrics and Gynaecology, University of Helsinki, 00290, Helsinki, Finland.
P-A Mårdh, Department of Obstetrics and Gynaecology, University Hospital, 22285, Lund, Sweden.
A Story, Out-patient Center, Franz Jonas-Platz, A-1210 Vienna, Austria.
B Stray-Pedersen, Department of Obstetrics and Gynaecology, National Hospital, N-0027, Oslo, Norway.

REFERENCES

Cost effectiveness of screening for *Chlamydia trachomatis*: a review of published studies

E Honey, C Augood, A Templeton, I Russell, J Paavonen, P-A Mårdh, A Stary and B Stray-Pedersen

Sex Transm Infect 2002 78: 406-412
doi: 10.1136/sti.78.6.406

Updated information and services can be found at:
http://sti.bmj.com/content/78/6/406

These include:

References

This article cites 28 articles, 7 of which you can access for free at:
http://sti.bmj.com/content/78/6/406#BIBL

Email alerting service

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/