LETTERS

If you have a burning desire to respond to a paper published in Sex Transm Infect, why not make use of our "eletters" option?

Log on to the STI web site (www.stijournal.com), find the paper that interests you, click on [Abstract] or [Full text] and send your electronic response by clicking on "eletters submit a response".

Providing your letter isn’t libellous or obscene, it will be posted within seven days. You can view recent eletters by clicking on "Read eletters" on our homepage.

As before, the editors will decide whether to publish the eletter in a future print issue.

Perforating chancre: any cause-effect relation with HIV infection?

Variation in clinical pictures of syphilis, when co-infected with HIV are well known.1 Normally, a classic Hunterian chancre heals within 1–2 weeks of treatment without scarring.2 Primary chancre, healing with perforation of the site, does not commonly occur.3 Here we report four patients with primary syphilis, in whom the chancre healed with perforation of the genitalia. Concomitant infection with HIV is presumed to be responsible for this destructive sequela.

Case 1

A 21 year old woman presented with a painless ulcer on the lateral side of the shaft of the penis. He gave a history of a painless ulcer on the same site about 1 month earlier. At presentation, his VDRL titre was 1:64. Following penicillin therapy, it healed with perforation of the prepuce.

Case 2

A 45 year old married man with high risk behaviour presented with a large perforation on the lateral side of the shaft of the penis. He was co-infected with HIV. ELISA for HIV was positive.

Comment

Gram stained smears from the ulcers and culture for aerobic and anaerobic organisms were negative in first three cases. In all the four patients, ELISA for HIV was positive.

Immune response to T pallidum is primarily cell mediated.4 In an immunocompetent host with primary syphilis, CD4+:CD8+ T lymphocyte ratio is high at the site of the chancre,5 which possibly prevents local multiplication of the organism. Consequent to the loss of local cellular immunity as a result of HIV infection there may be an enhanced ability of the organism to multiply locally, giving rise to larger and deeper ulcers which are slower to heal. This fact has been demonstrated experimentally in animal models.6 Studies exploring the correlation of CD4+ T cell count and stage of HIV infection with this altered manifestation of primary syphilis should be undertaken. This might show the impact of HIV infection on the clinical severity of primary chancre.

Figure 1 Perforation of prepuce.

Bilateral inguinal lymphadenopathy was present. DGI from the ulcer was negative and VDRL was 1:64. Following penicillin therapy, it healed with perforation of the prepuce.

Case 4

A 23 year old unmarried man, with a history of repeated unprotected exposure to commercial sex workers, presented with a painless, indurated ulcer on the dorsal prepuce, multiple genital mollusca contagiosa, and genital warts.

A 20 year old unmarried male patient with primary syphilis, in whom the chancres healed within 1–2 weeks of treatment without scarring.

A 23 year old unmarried man, with a history of genital mollusca contagiosa, and genital warts.

References

Accepted for publication 10 October 2002

Superior mesenteric artery syndrome in an HIV positive patient

A 27 year old HIV positive man with a CD4+ lymphocyte count of 26 cells x10^3/l presented with a 2 week history of progressive left sided weakness, vomiting, and weight loss. A computed tomograph (CT) brain scan demonstrated ring lesions bilaterally in the basal ganglia. Toxoplasma serology was positive at a titre of 1:256 and treatment for cerebral toxoplasmosis commenced. His weakness responded to therapy but vomiting continued despite antiemetics. An ultrasound scan demonstrated an enlarged, dilated stomach, dilated first and second parts of the duodenum, and an obstruction at the level of the third. Barium studies confirmed these findings but also demonstrated prominent peristalsis in the second part of the duodenum and an abrupt cessation of flow to barium in the middle of the third (fig 1). Some flow of barium into the jejunum was noted when the patient was turned prone. An abdominal CT scan demonstrated a reduction in the angle of the superior mesenteric artery and the aorta (fig 2). A diagnosis of superior mesenteric artery (SMA) syndrome was considered. Two litres of bile were aspirated per naso-gastric tube daily and he continued to lose weight. His body mass index (BMI) fell to...

Figure 1 Image from barium meal series. The proximal duodenum is dilated. There is an abrupt calibre change (arrow) in the third part where the superior mesenteric artery crosses. Distinct peristalsis was seen in this region during the study.
or nasogastric decompression is often difficult because of severe gastric dilatation. Duodenjejunojejunostomy or gastrojejunojejunostomy are the surgical procedures of choice when medical therapy fails.

The patient did not experience immediate symptomatic relief through surgery but did achieve rapid weight gain via jejunal feeding. We report the first case of SMA syndrome in a patient with AIDS. The spread of HIV worldwide and its association with severe wasting makes this an important differential diagnosis for the clinician.

R Stümpfle, A R Wright, J Walsh
St Mary’s Hospital, Praed Street, London W2 1NY, UK

Correspondence to: Dr Richard Stümpfle,
Department of Anaesthetics, Northwick Park Hospital, Watford Road, Harrow, Middlesex HA1 3UJ, UK; rstumpfle@doctors.net.uk

References
1 Anderson JR, Earnshaw PM, Fraser GM. Extrinsic compression of the duodenum (arrow). Note grossly distended stomach anteriorly.

Was the Papanicolaou smear responsible for the decline of Trichomonas vaginalis?

There has been a dramatic decline in the prevalence of trichomoniasis in Australia over the past 30 years. In 1979, 17.8% of women attending a Sydney STI clinic had Trichomonas vaginalis infection.1 By 1998 less than 1% of non-Indigenous women presenting to family planning and STI clinics in another jurisdiction were diagnosed with the condition2 and most Australian urban pathology laboratories do not diagnose a case from one year to the next. Similar observations have been reported elsewhere: the rate of detection of trichomoniasis in Papanicolaou (Pap) smears in Denmark fell from 19% in 1967 to <2% in 1997,3 and a study in Brazil found similar results (a peak fell from 19% in 1967 to <2% in 1997,4 and a study in Brazil found similar results (a peak fell from 19% in 1967 to <2% in 1997,4 and a study in Brazil found similar results (a peak fell from 19% in 1967 to <2% in 1997,4 and a study in Brazil found similar results (a peak fell from 19% in 1967 to <2% in 1997,4 and a study in Brazil found similar results (a peak fell from 19% in 1967 to <2% in 1997,4)

In the absence of any health promotional activities relating to trichomoniasis and in a setting where the prevalence of another STI, Chlamydia trachomatis, has shown a fourfold increase in notifications in the past 10 years (Communicable Diseases Network Australia, National Notifiable Diseases Surveillance System, personal communication), what can explain the decline in the prevalence of T vaginalis?

I propose that the change in prevalence is related to Pap screening—suggesting that Pap screening reduces the prevalence of Chlamydia infection in women in northern Australia.

The change in prevalence could be related to Pap screening—suggesting that Pap screening reduces the prevalence of Chlamydia infection in women in northern Australia.

The Pap smear hypothesis could be tested by correlating the prevalence of trichomoniasis with the rate of cervical cancer screening in selected populations and through clinic based case-control studies. (The virtual absence of trichomoniasis in urban Australia means that this work must be performed in other populations). If the prevalence of T vaginalis is related to Pap screening—a plausible approach to chlamydia control—that is, routinely linking nucleic acid amplification testing for Chlamydia with the Pap smear, could also be considered.

Conflict of interest: None.

F J Bowden
Australian National University and Canberra Sexual Health Centre, PO Box 11, Woden ACT, Australia 2605, frank.bowden@act.gov.au

References
epidemic in Russia of between 6–11% by 2010, and the potential for economic decline and upheaval, and a recent explosive syphilis epidemic—must therefore be examined closely. Could Ukraine present a model for Russia in terms of controlling the HIV epidemic? Does Ukraine in fact represent an ongoing epidemic inadequately described by official statistics?

The first indication that perhaps the data presented by Mavrov and Bondarenko negates the ongoing HIV epidemic in Ukraine is the apparent contradiction in table 1, which reports the prevalence of HIV among select groups in 1998 and 1999. While HIV prevalence for “all populations” declined, every subpopulation increased, except for a decline from 0.07% to 0.064% among blood donors. Prevalence among pregnant women, who reflect the likely future of the epidemic, increased by 33%.

Current official statistics in Ukraine simply do not reflect the current status of the epidemic, and, importantly, do not reflect the likely future course of the epidemic. As Mavrov and Bondarenko report, the majority of new HIV cases continue to be among IDUs. This population is wary of the healthcare sector, as the acknowledgement of drug use to a healthcare provider leads to obligatory registration and confinement for treatment, possible job loss, loss of one’s driving licence, and criminal prosecution. Kobyshcha reported that only 5% of IDUs were covered by the current system of HIV surveillance. Rather than the 8.6% prevalence reported by Mavrov and Bondarenko among IDUs, cross sectional studies have shown prevalence of between 18% and 64% (table 1).

Behavioural factors also argue against the likelihood of a stable epidemic in Ukraine. In a study of female sex workers (FSWs) in Odesa conducted in 1997 and 1999, the percentage of FSWs reporting always using condoms declined (from 49% to 40%) between 1997 and 1999. While 99% national reproductive health survey found that 27% of women reported condom use at the time of first sexual experience. The recent attempt to model the future course of the HIV/AIDS epidemic in Ukraine, developed an “optimistic” scenario, where HIV prevalence increased to 2% of the adult population by 2010, and a “pessimistic” scenario, where HIV prevalence increased to 5%. While official statistics might indicate a stable epidemic, after more than two decades of global experience, no one should mistake the clear evidence that an explosive epidemic is ongoing in the Ukraine. Failing to acknowledge the true nature of an epidemic has yet to save any nation from its consequences.

J J Amon
Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA; joe_j_amon@yahoo.com

References

Accepted for publication 16 December 2002

Raising awareness of UK GUM clinic activities

In their recent letter on the sexual health issues which face performers in the adult entertainment industry, Gabrielsen and Barton highlight the current lack of coherent sexual health infrastructure for this population in the United Kingdom. The work of the AIM Health Care Foundation in the United States, is a valuable model which identifies the unique sexual health requirements of adult industry workers. By providing specialist care for the performers, AIM health care provides advice and information to a group whose specific needs have been globally poorly addressed. Evidence of this is provided by the large number of performers who choose to access AIM Health Care for their HIV tests in the United States. In the United Kingdom this would also seem to be the case, as the few adult performers who have any form of STI screening also prefer to use facilities in private clinics. The role of GUM clinics stretches beyond an authenticating agency for HIV certification, the future of AIDS. The social and economic impact of HIV and AIDS in Ukraine: a resotudy. Kyiv, Ukraine: Ukrainian Institute for Social Research, 2001.

References
1 Gabrielsen L, Barton SE. HIV negative certification and sexual health issues facing performers in the adult entertainment industry in the UK. Sex Transm Infect 2002;78:311.
4 Barton SE, Gabrielsen L. Defining the need to develop sexual health services for performers in the adult entertainment industry. Paper presented at JUSt Europe 2002.

Partner notification in primary care

In the past decade chlamydia tests have become more widely available in primary care, and many female patients are now diagnosed and treated in this setting. The lack of skills and resources for partner notification in primary care is now a matter of public health concern. We undertook a study in three districts in order to explore their current practice and attitudes in relation to partner notification and treatment.

All GPs in the Nottingham Health District (n=367), and GPs recruited for the Chlamydia Partnership Project in north London (n=65) (a randomised trial of health adviser led partner notification for primary care patients) were invited to complete a short questionnaire. The response rate was 96%.

Of the 242 respondents, 86% considered testing for genital Chlamydia trachomatis infection in women to be a GP role, while 60% considered that partner notification was also a role of the GP. 90.5% of respondents thought that one or more patients had had a positive test at the practice in the preceding year.

Among GPs who had recently been involved in managing chlamydia, 82.5% always or sometimes managed the patient wholly within primary care; 70.1% said they “always” or “sometimes” managed partners. However, responsibility for ensuring this happened was generally devolved to the patient, since 73.8% “always,” and 22.5% “sometimes” dealt with partner notification by telling the patient to get the partner treated.

GPs appeared to be well aware of the importance of contact tracing. Respondents were asked to state difficulties in managing chlamydia in free text form. Of 200 GPs stating one or more difficulties, 76.5% mentioned contact tracing. Other problems cited were follow up or compliance (21.5%), explanation, supporting relationships and counselling (17.3% of respondents), perceived inadequacies of tests, mainly poor sensitivity and invasiveness (12.5%), and the diagnosis of coexisting infections (10.5%).

The majority of GPs (69.9%) would treat with an appropriate antibiotic of equal or greater dose and duration than that currently recommended by the Central Audit Group for

Table 1: Prevalence of HIV among injecting drug users, 2000

<table>
<thead>
<tr>
<th>Site</th>
<th>HIV prevalence (%)</th>
<th>Sample size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poltova</td>
<td>41.7</td>
<td>259</td>
</tr>
<tr>
<td>Donetsk</td>
<td>39.7</td>
<td>252</td>
</tr>
<tr>
<td>Kryvyi Rig</td>
<td>28.1</td>
<td>249</td>
</tr>
<tr>
<td>Odessa</td>
<td>64.0</td>
<td>293</td>
</tr>
<tr>
<td>Simferopol</td>
<td>27.2</td>
<td>261</td>
</tr>
<tr>
<td>Kharkiv</td>
<td>17.8</td>
<td>250</td>
</tr>
</tbody>
</table>

Genitourinary Medicine, while 17.3% specified an inadequate course. Dosage or duration could not be ascertained in 12.7% of responses. This suggests substantial improvement in the past few years, although our study probably over-represents GPs already working in this field and may exaggerate the extent of good practice.

Our study suggests that GPs already willingly take on an important role in diagnosing and managing genital chlamydia infection. They agree and overwhelmingly that partner notification is the main difficulty in managing these patients. However, there is little evidence of follow up strategies designed to minimize reinfection risk, as in previous studies, and the majority of GPs consider that partner notification is not their role. The latter view probably explains why the majority manage partner notification by simply telling the patient to deal with it, without support or follow up.

If testing in primary care continues to increase without adequate support for partner notification, much of the resource used in testing women will be wasted. The announcement of pilot sites for chlamydia testing in primary care is to be welcomed. However, support for GPs in partner notification should not wait for the roll out of a national programme, as many patients diagnosed in primary care are already at risk of re-infection and onward transmission.

Acknowledgements
We are grateful to NoCT eN and Trent Focus (primary care research networks) for facilitating the Chlamydia Partnership Project. Dr Jackie Cassell was supported through funding from the Department of Health.

J Cassell, M G Brook
Department of Sexually Transmitted Diseases, Royal Free and University College Medical School, Mortimer Market Centre, Off Copper Street, London WC1E 6AU, UK

R Slack, N James, A Haywood
Division of Public Health Sciences, University of Nottingham Medical School

A Johnson
Centre for Infectious Disease Epidemiology, Department of Primary Care and Population Sciences and Department of Sexually Transmitted Diseases, University College London, London, UK

Correspondence to: Dr Jackie Cassell, Department of Sexually Transmitted Diseases, Royal Free and University College Medical School, Mortimer Market Centre, Off Copper Street, London WC1E 6AU, UK; jackiec@quadrivium.demon.co.uk

References

Accepted for publication 8 January 2003

Circumcision in genital warts—let us not forget!

Patients with genital warts present to the healthcare professional with two major problems of persistence and recurrence. These problems are associated with the specific antiviral therapy. Various treatments tried in the management of genital warts are topical podophyllin, podophyllotoxin, cryotherapy, electrotherapy, chemical cautery, carbon dioxide laser, 5-fluorouracil cream, topical imiquimod cream, and intralesional interferon. We wish to highlight the role of circumcision in extensive genital warts involving prepuce, which were refractory to the conventional treatment. A 50 year old patient presented to us with genital warts for duration of 4 years. On examination, lesions were in the form of sessile, filiform, and papular keratotic verrucous lesions present involving both outer and undersurface of almost whole of the prepuce (fig 1). These lesions were treated by us and in the past by various doctors with topical podophyllin, trichloroacetic acid cautery, electrotherapy, etc, for periods ranging from weeks to months with only minimal response, with the lesions coming back. The patient had some difficulty in retraction of the prepuce and was psychologically disturbed. The patient otherwise was healthy with no evidence of any other disease. Considering the extensive involvement of prepuce and refractory nature to various treatments, circumcision was performed. Histopathological examination of the excised tissue showed changes consistent with warts without any cellular atypia. Surgical wound healed well in a week with no complications.

Extensive genital warts with evidence of keratinisation are often refractory to podophyllin, podophyllotoxin, and cryotherapy, etc, and are best dealt with surgically or by topical 5-fluorouracil cream. Scissor excision has been mentioned in the treatment of sessile lesions over the shaft of penis, labia majora, and perianal warts.1 However, circumcision for extensive preputial warts finds no place in the list of treatments for genital warts in men. In addition to the psychological morbidities, larger and more numerous warts can cause discomfort, and particularly involving prepuce can cause phimosis, secondary infection, and marital disharmony and considerable anxiety in the sexual partner. Globally, approximately 25% of the male population is circumcised for religious, cultural, medical, or parental choice reasons. However, controversies surround its benefits and protective effects against STDs. For genital warts, one study has reported a significant association with the lack of circumcision.2

Substantive evidence supports the premise that circumcision protects males from HIV infection, penile carcinoma, urinary tract infections, and ulcerative STDs.3 Although it may be debatable to recommend circumcision to reduce the risk of acquiring any one of the other STDs/HIV infection in isolation, taken together however the psychological and sexual discomforts for the patients and their sexual partners with recurrent/persistent extensive preputial warts, circumcision should be tried.

S Dogra, B Kumar
Department of Dermatology, Venerology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India

Correspondence to: Professor Bhushan Kumar, Department of Dermatology Venerology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh 160 012, India, kumarbhushan@hotmail.com

References

Accepted for publication 16 January 2003

Treatment of Candida glabrata using topical amphotericin B and flucytosine

We read with interest the article by White and colleagues on the treatment of Candida glabrata using topical amphotericin B and flucytosine because this infection can prove difficult to treat.1 We have since used this treatment on a 28 year old woman with a 10 year history of recurrent candida.

The woman first attended our department complaining of a recurrent itchy white discharge. She had received numerous courses of antifungals including topical clotrimazole, oral itraconazole, and fluconazole without any relief. Vaginal swabs were positive for C glabrata and she was treated with nystatin pessaries 200 000 units at night for 14 nights. Culture was still positive for C glabrata at follow up 4 weeks later so she was advised to continue with nystatin pessaries for a further 4 weeks. On review she felt her symptoms were slightly better but she found the pessaries were not dissolving so she was switched to nystatin cream 200 000 units by
BOOK REVIEW

I judge this is a jewel of a book, although you would not think so from my comments in the next paragraph.

My initial reaction was one of intense irritation. The preface stated that the intention was to “review the state of the art . . . of this rapidly emerging . . . field.” A bold promise for which tight editorial time lines and up to date references would be essential. Yet, even though the book was published in 2002, there were very few references from 2001 or even from 2000 in some chapters. To take as one particularly bad example, the chapter dealing with the immunotherapy of HIV had only one reference as recent as 2000, and all the rest were from the last millennium.

It is a credit to the book’s other talents that my bad humour was rapidly dissipated. The introductory chapters were, quite simply, a pleasure. The basis of humoral immunity was a clear rendition of the area, and the chapter on the principles of cellular immunology was as good, and as enjoyable an introduction to the field as you could get. The final introductory chapter, on mucosal defences, maintains the high standards set by the first two.

The remainder of the book is divided into three sections covering the molecular basis for immunotherapy, immunotherapy for HIV infection, and immunotherapy for other infectious diseases. Each of these three sections provides a good review of the major issues. The molecular basis of for immunotherapy contains an excellent chapter on the role of dendritic cells, and usefully explains how their crucial role in immune defences might be utilised for immune therapy. The chapter on cytokines sheds light on an area which is too complex or obtuse for many.

The section on immunotherapy for HIV infection covers in turn the basis for immunotherapeutic HIV vaccines, passive immunotherapy, and gene therapy. There are some notable omissions dictated by the presumed delay between the research for each chapter, and publication of the book. For instance, RNA interference, sometimes known as post-transcriptional gene silencing, is currently being investigated as a possible major therapeutic strategy for the future. True, the problem of delivery to the target cells still has to be solved, but for RNA interference to be left out dates the book already. Similarly many of the viral and bacterial vectors for vaccine delivery worked on the past few years, such as adenovirus, and salmonella, to name just two, are not included. Even those that are, such as canarypox, are not included in the index.

In conclusion, this book represents a flawed gem. Viewed from a certain light it is illuminating, a joy to behold. From other angles, the imperfections are all too obvious. None the less, for a physician or scientist working in the field of infectious diseases or related areas such as STDs or HIV, it provides an introduction to the field of immunotherapy which is both accessible and enjoyable. Read it within the next couple of years, such as adenovirus, and salmonella, to name just two, are not included. Even those that are, such as canarypox, are not included in the index.

Which leads to my final criticism before summing up—the index is entirely inadequate and mitigates strongly against using this as a book of reference.

It is a credit to the book’s other talents that my bad humour was rapidly dissipated. The introductory chapters were, quite simply, a pleasure. The basis of humoral immunity was a clear rendition of the area, and the chapter on the principles of cellular immunology was as good, and as enjoyable an introduction to the field as you could get. The final introductory chapter, on mucosal defences, maintains the high standards set by the first two.

The remainder of the book is divided into three sections covering the molecular basis for immunotherapy, immunotherapy for HIV infection, and immunotherapy for other infectious diseases. Each of these three sections provides a good review of the major issues. The molecular basis of for immunotherapy contains an excellent chapter on the role of dendritic cells, and usefully explains how their crucial role in immune defences might be utilised for immune therapy. The chapter on cytokines sheds light on an area which is too complex or obtuse for many.

The section on immunotherapy for HIV infection covers in turn the basis for immunotherapeutic HIV vaccines, passive immunotherapy, and gene therapy. There are some notable omissions dictated by the presumed delay between the research for each chapter, and publication of the book. For instance, RNA interference, sometimes known as post-transcriptional gene silencing, is currently being investigated as a possible major therapeutic strategy for the future. True, the problem of delivery to the target cells still has to be solved, but for RNA interference to be left out dates the book already. Similarly many of the viral and bacterial vectors for vaccine delivery worked on the past few years, such as adenovirus, and salmonella, to name just two, are not included. Even those that are, such as canarypox, are not included in the index.

In conclusion, this book represents a flawed gem. Viewed from a certain light it is illuminating, a joy to behold. From other angles, the imperfections are all too obvious. None the less, for a physician or scientist working in the field of infectious diseases or related areas such as STDs or HIV, it provides an introduction to the field of immunotherapy which is both accessible and enjoyable. Read it within the next couple of years, such as adenovirus, and salmonella, to name just two, are not included. Even those that are, such as canarypox, are not included in the index.

Which leads to my final criticism before summing up—the index is entirely inadequate and mitigates strongly against using this as a book of reference.

It is a credit to the book’s other talents that my bad humour was rapidly dissipated. The introductory chapters were, quite simply, a pleasure. The basis of humoral immunity was a clear rendition of the area, and the chapter on the principles of cellular immunology was as good, and as enjoyable an introduction to the field as you could get. The final introductory chapter, on mucosal defences, maintains the high standards set by the first two.

The remainder of the book is divided into three sections covering the molecular basis for immunotherapy, immunotherapy for HIV infection, and immunotherapy for other infectious diseases. Each of these three sections provides a good review of the major issues. The molecular basis of for immunotherapy contains an excellent chapter on the role of dendritic cells, and usefully explains how their crucial role in immune defences might be utilised for immune therapy. The chapter on cytokines sheds light on an area which is too complex or obtuse for many.

The section on immunotherapy for HIV infection covers in turn the basis for immunotherapeutic HIV vaccines, passive immunotherapy, and gene therapy. There are some notable omissions dictated by the presumed delay between the research for each chapter, and publication of the book. For instance, RNA interference, sometimes known as post-transcriptional gene silencing, is currently being investigated as a possible major therapeutic strategy for the future. True, the problem of delivery to the target cells still has to be solved, but for RNA interference to be left out dates the book already. Similarly many of the viral and bacterial vectors for vaccine delivery worked on the past few years, such as adenovirus, and salmonella, to name just two, are not included. Even those that are, such as canarypox, are not included in the index.

In conclusion, this book represents a flawed gem. Viewed from a certain light it is illuminating, a joy to behold. From other angles, the imperfections are all too obvious. None the less, for a physician or scientist working in the field of infectious diseases or related areas such as STDs or HIV, it provides an introduction to the field of immunotherapy which is both accessible and enjoyable. Read it within the next couple of years, such as adenovirus, and salmonella, to name just two, are not included. Even those that are, such as canarypox, are not included in the index.

Which leads to my final criticism before summing up—the index is entirely inadequate and mitigates strongly against using this as a book of reference.

Barry S Peters
Was the Papanicolaou smear responsible for the decline of *Trichomonas vaginalis*?

F J Bowden

Sex Transm Infect 2003 79: 263
doi: 10.1136/sti.79.3.263

Updated information and services can be found at:
http://sti.bmj.com/content/79/3/263.1

These include:

References This article cites 6 articles, 1 of which you can access for free at:
http://sti.bmj.com/content/79/3/263.1#BIBL

Email alerting service Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/