Circumcision practice in the Philippines: community based study

Male circumcision is a well studied phenomenon. However, much of the published knowledge on circumcision is derived from highly industrialised Western countries, particularly the United States. The non-Western context of circumcision is not well known, despite being a universal practice in various countries. For example, in the Philippines, circumcision was common in the past as it is at present, being an integral aspect of the social organisation of the society. This report offers a Philippine perspective of male circumcision, particularly its adoption and complications.

The study employed semi-structured face to face interviews with 114 circumcised males conveniently recruited using a snowball technique from two communities. One (60) of the clients were aged 13–18, while the rest were older, working in varied and low income occupations, and were single, married, or separated.

The majority of respondents (51.7%) were circumcised between ages 10 and 14. Others had the same experience before age 10 (42.1%) or between 15 and 18 (5.3%). Respondents gave several reasons for their circumcision: not wanting to be called “supot” or uncircumcised (66.7%); being at the right age (41.2%); and wanting to grow tall and physically fit (29.8%).

Other reasons included the need to get rid of smegma in the penis (22.8%); to cause pregnancy (20.2%); and to obey parents (18.4%) (Table 1). Seven of every 10 clients (68.4%) were circumcised by non-medical providers; the remaining three by medical providers. Respondents paid for their circumcision in cash (51.8%) or in kind by medical providers. Respondents’ circumcisers included medical doctors and lay people in the community.

The central role of lay individuals in undertaking circumcision is part of the traditional character of this community based practice.

Post-circumcision complications were limited to inflammation and swelling, consistent with Western data wherein risks are regarded as minor and complications were at a rate 0.2 to 0.6%. Respondents did not take these complications seriously as they were not overly concerned with the healing period of the circumcised penis of their respondents was highly protracted. Much of the foregoing evidence on reasons for adopting circumcision highlights the fact that respondents’ circumcision was predominantly traditional.

Acknowledgements

The research reported was funded by a grant from the Ford Foundation/Jakarta through the Australian National University Demography Department (S440125). I thank the team members—Loyd Norella, Bruce Ragas, Redentor Rola, Michael Sibhalza and Christian Tena—for their research assistance.

R B Lee
De La Salle University, 2401 Taft Avenue, Manila, Philippines; leer@dlsu.edu.ph

doi: 10.1136/sti.2004.009993

Table 1: Clients’ reasons why they underwent circumcision

<table>
<thead>
<tr>
<th>Responses</th>
<th>No</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 To avoid being called “supot” or uncircumcised</td>
<td>76</td>
<td>66.7</td>
</tr>
<tr>
<td>2 Already a grown up, of the right age—part of the tradition to undergo circumcision</td>
<td>47</td>
<td>41.2</td>
</tr>
<tr>
<td>3 To grow tall and physically fit</td>
<td>34</td>
<td>29.8</td>
</tr>
<tr>
<td>4 Wished his penis to be free of smegma</td>
<td>26</td>
<td>22.8</td>
</tr>
<tr>
<td>5 To be able to cause pregnancy; wanted to have a child of his own</td>
<td>23</td>
<td>20.2</td>
</tr>
<tr>
<td>6 Parents told him to undergo the procedure</td>
<td>21</td>
<td>18.4</td>
</tr>
<tr>
<td>7 To court a girl, have a girlfriend and get married</td>
<td>14</td>
<td>12.3</td>
</tr>
<tr>
<td>8 Women like to have sexual intercourse with a man whose penis is circumcised</td>
<td>12</td>
<td>10.5</td>
</tr>
<tr>
<td>9 To facilitate entry of his penis during sexual intercourse</td>
<td>7</td>
<td>6.1</td>
</tr>
<tr>
<td>10 To enhance the form of his penis and to make his glans larger</td>
<td>7</td>
<td>6.1</td>
</tr>
<tr>
<td>11 It is in the Bible that a Christian must be circumcised</td>
<td>11</td>
<td>9.5</td>
</tr>
<tr>
<td>12 To become intelligent</td>
<td>3</td>
<td>2.6</td>
</tr>
<tr>
<td>13 Circumcision was free</td>
<td>2</td>
<td>1.8</td>
</tr>
</tbody>
</table>

*Multiple response (n = 114)
Determinants of hospital mortality of HIV infected patients from north India

A majority of the HIV infected population lives in developing nations. Most patients require hospitalisation for management of opportunistic infections (OIs) sometime during the course of their illness. Locally endemic infections and underlying malnutrition tend to influence the manifestations and course of the disease. However, there is paucity of data on pattern of disease and determinants of immediate outcome of such patients from Indian subcontinent.

We report the determinants of hospital mortality in a cohort of 135 consecutive cases of HIV/AIDS, aged 13 years and above, admitted to the All India Institute of Medical Sciences (AIIMS), New Delhi, during the period of January 2000 through July 2003. These patients had been hospitalised for suspected OIs, and all patients underwent examination for diagnosis with subsequent management as per standard guidelines. For patients with Pneumocystis jiroveci pneumonia (PCP) whenever hypoxemia was severe (PaO₂<70 mm Hg; n = 5), corticosteroids were given in addition to oral co-trimoxazole. None of these patients received assisted ventilation. Secondary prophylaxis for the OIs was initiated as recommended. Mean age of the patients was 34 (SD 10) years and 23 patients (17%) were women. CD4+ cell counts were done in 109 patients. Most of these patients (82.6%) had CD4+ counts less than 200 cells ×10⁹/L. Fifty patients (46%) had CD4+ counts less than 50 cells ×10⁹/L. The mean number of OI was 1.4 per patient. The commonest OI was tuberculosis (TB) (71.1%), followed by oral candidiasis (39.3%). Other OIs (full data presented elsewhere) included PCP (n = 10), cryptococcal meningitis (n = 8), cerebral toxoplasmosis (n = 5), cytomegalovirus retinitis (n = 3), visceral leishmaniasis (n = 2), and progressive multifocal leukoencephalopathy (n = 1).

Twenty one patients (15.6%) died in hospital, most of them as a result of TB (n = 16; 76.2%) and PCP (n = 4; 19%). Factors associated with hospital mortality, on bivariate analysis, are shown in table 1. After adjusting for other factors (by multivariate logistic regression analysis), PCP was the only independent determinant and was associated with a more than fourfold increased risk of hospital mortality (adjusted odds ratio (95% CI): 4.7 (1.1 to 20.9); p = 0.041).

Overall hospital mortality of 15.6% in this cohort is considerable and reflects the advanced nature of the disease at presentation. As our institute is a tertiary care facility.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Survived (n = 114)</th>
<th>Died (n = 21)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSE score</td>
<td>30 (23–30)</td>
<td>5 (0–30)</td>
<td>0.001</td>
</tr>
<tr>
<td>Blood urea (mg/dl)</td>
<td>29 (16)</td>
<td>41 (35)</td>
<td>0.051</td>
</tr>
<tr>
<td>CD4+ count (&gt;100/ul)</td>
<td>62 (8–152)</td>
<td>38 (7–111)</td>
<td>0.029</td>
</tr>
<tr>
<td>Pericardial effusion</td>
<td>0.8%</td>
<td>9.5%</td>
<td>0.051</td>
</tr>
<tr>
<td>ATT</td>
<td>63%</td>
<td>80%</td>
<td>0.033</td>
</tr>
<tr>
<td>PCP</td>
<td>5.3%</td>
<td>19%</td>
<td>0.004</td>
</tr>
</tbody>
</table>

MMSE, Mini Mental Status Examination; ATT, antituberculosis treatment; PCP, Pneumocystis jiroveci pneumonia.

*Data are presented as median (interquartile range); p values determined by Mann-Whitney U test.
†Data are presented as mean (SD); p value determined by independent t test.
‡Data are expressed as proportion; p values determined by χ² test.

Figure 1 DNA sequence alignment of MOMP-PCR fragments. Nucleotide numbers are according to C trachomatis L2 strain 434/Bu (Genbank Acc No M14738). IP, WH, and LL are the initials of the patients who were C trachomatis positive. Homology to 434/Bu is 100% (IP), 98.9% (WH), and 99.5% (LL), respectively.

<table>
<thead>
<tr>
<th>L2434/Bu</th>
<th>WH</th>
<th>LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>707</td>
<td>766</td>
<td></td>
</tr>
<tr>
<td>767</td>
<td>826</td>
<td></td>
</tr>
<tr>
<td>827</td>
<td>886</td>
<td></td>
</tr>
<tr>
<td>887</td>
<td>946</td>
<td></td>
</tr>
<tr>
<td>947</td>
<td>1006</td>
<td></td>
</tr>
<tr>
<td>1007</td>
<td>1066</td>
<td></td>
</tr>
<tr>
<td>1067</td>
<td>1072</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Survived (n = 114)</th>
<th>Died (n = 21)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSE score</td>
<td>30 (23–30)</td>
<td>5 (0–30)</td>
<td>0.001</td>
</tr>
<tr>
<td>Blood urea (mg/dl)</td>
<td>29 (16)</td>
<td>41 (35)</td>
<td>0.051</td>
</tr>
<tr>
<td>CD4+ count (&gt;100/ul)</td>
<td>62 (8–152)</td>
<td>38 (7–111)</td>
<td>0.029</td>
</tr>
<tr>
<td>Pericardial effusion</td>
<td>0.8%</td>
<td>9.5%</td>
<td>0.051</td>
</tr>
<tr>
<td>ATT</td>
<td>63%</td>
<td>80%</td>
<td>0.033</td>
</tr>
<tr>
<td>PCP</td>
<td>5.3%</td>
<td>19%</td>
<td>0.004</td>
</tr>
</tbody>
</table>

MMSE, Mini Mental Status Examination; ATT, antituberculosis treatment; PCP, Pneumocystis jiroveci pneumonia.

*Data are presented as median (interquartile range); p values determined by Mann-Whitney U test.
†Data are presented as mean (SD); p value determined by independent t test.
‡Data are expressed as proportion; p values determined by χ² test.

References

and a national referral centre, this is expected. None the less, it may be possible that some OIs remained undiagnosed and initially misinterpreted the outcome. This does occur as was shown in a necropsy study where it was found that a large number of potentially fatal OIs were not diagnosed antemortem.1

Unexpectedly, CD4+ counts had no independent effect on mortality. A similar observation has been reported in some previous studies.1 It appears that the virulence of the pathogen causing the OI, rather than the stage of the underlying disease, tends to influence the short term outcome. This finding has important therapeutic implications, especially because almost all these patients die of an OI.

It is suggested that any HIV infected patients with an OI, irrespective of the stage of the disease, should be managed with an aggressive approach. Once they recover from the OI, they can be offered antiretroviral therapy, which, over the years, has become extremely potent and effective. Such an approach is likely to improve the long term outcome of these patients.

S K Sharma, T Kadhiran, A Bango, I Bathia, T Goyal, P K Saha
Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
Correspondence to: Dr S K Sharma, Department of Medicine, Division of Pulmonary and Critical Care Medicine, All India Institute of Medical Sciences, New Delhi-110029, India; ssharma@aiims.ac.in
doi: 10.1136/sti.2004.009241
Accepted for publication 18 March 2004

References

STI services in the United Kingdom, how shall we cope?
The recent proposals/debate addressing the increasing genitourinary medicine (GUM) workload are imaginative. I wish to contribute the following observations.

(1) The listed “guiding principles” for the GUM services role are missing the most important function that is expected by patients: to exclude sexually transmitted infections. Casual sex, contact tracing, and sexual assault are examples of conditions that require full assessment.

(2) The revelation that some 9% of the sexually active population are harbouring asymptomatic chlamydial infection presents GUM physicians with a professional responsibility. Chlamydia screening will require extensive resources to test to primary care.1

(3) The debate ignores the issue of funding. To assume that GPs are going to provide “additional services” for a lower cost than GUM clinics, with their existing infrastructure, contradicts the basis of health care economics.2

(4) The relation between quantity and quality of health care is inverse; with both healthcare workers and clients appreciative of this relation. The pressures for quantity will eventually force the quality of care downhill.3

(5) Clinical governance implicates clinicians (as providers and stakeholders) in the quality of their provision. It would be professionally unwise to compromise on quality as a result of the static, or a relative decrease in, funding. It is professionally unacceptable and could prove medico-legally indefensible.4

(6) The open access of the GUM clinics will always attract patients, and the free prescriptions will continue to influence demand (particularly with recurrent infections).

(7) There is a potential of primary care’s initial enthusiasm to fade away, with patients re-diverted to GUM clinics, while resources are tracking in the private direction.5

(8) The provisions of service should be based primarily on clinical needs, with a clearer understanding of the difference between screening and testing. The task of providing screening (for example, for chlamydia) in primary care (leading to the cascade of recall of positive cases, the treatment of patients’ conditions, and the referral for contact tracing) should be implemented fully in primary care, before any other directives.

(9) Primary care units, providing full testing for STIs, should follow the same clinical governance and quality assurance standards expected and provided in GUM clinics. The issues of access, confidentiality, free prescriptions and reporting conditions (coding: KC66) have not been addressed yet in primary care settings.

I propose the following alternative models of service.

(1) “Three tiered” GUM services are provided, within existing GUM departments, where care is streamlined with defined “clinical care pathways.”

(a) The first tier/setting of service could be provided by nurses and/or junior doctors (under the supervision and support of senior GUM physicians). It will triage patients and deal with primary care conditions.

(b) The secondary tier/setting would deal with clinical conditions of intermediate complexity (that prove to be outside the expertise of the first setting). It will be provided by medical staff, of intermediate seniority, supported by senior/specialised nurses.

(c) The tertiary tier/setting is already existing within most GUM services (for example, HIV, sexual dysfunction, genital dermatosis, forensic genitourinary medicine). It will be provided by specialised medical staff, assisted by specialised nurses, where junior grades attend for training.

(2) A “three sessions” day could be provided, to maximise the use of accommodation and infrastructure resources. Evening and/or weekend clinics to be considered—with appropriate funding.

(3) The provision of satellite GUM clinics where local services are unable to cope with demands. They could be provided (and supported) by existing larger primary care, GPs and/or family planning units, under the auspices of the main GUM clinic. This will maintain and ensure quality, KC66 reporting, confidentiality, and/or free prescribing.

These modules are already taking shape in some GUM departments.

Correspondence to: Dr A R Markos, Department of Genito-Urinary Medicine, Mid Staffordshire General Hospitals, NHS Trust, Staffordshire General Hospital, Weston Road, Stafford ST16 3SA, UK; stephanie.thorpe@msmg.co.uk

1 Bradbeer C, Mears A. STI services in the United Kingdom, how shall we cope? Sex Transm Infect 2003;79:435–8
To address this we compared the survival of 30 distinguishable clinical strains of NG in charcoal transport swabs held at ambient temperature (AT: 20–22°C) and at 4°C.

Swabs (Transwab; Medical Wire & Equipment Co) were inoculated with a suspension of NG in phosphate buffered saline (PBS). For each strain, four swabs were inoculated, to allow comparison of storage at AT or 4°C, for 24 or 48 hours. At times 24 hours and 48 hours, NG organisms were recovered using the potential swabs by vortexing the tips in 1 ml PBS. Triplicate counts were performed on the 0 hour inocula and the washings on chocolate agar (Oxoid, Basingstoke, UK) using a spiral plater (Don Whitley, Shipley, UK). The median value for each triplicate was taken, and counts compared using the Wilcoxon rank sum test.

At 24 hours there was no significant difference between AT and 4°C counts, with median (interquartile range, IQR) recoverable log10 cfu of 4.57 (3.78–4.84) and 4.72 (3.19–4.53) for AT and 4°C, respectively (p = 0.004).

Figure 1

Recovery of 30 distinguishable strains of Neisseria gonorrhoeae from charcoal transport medium stored at ambient temperature or 4°C. N.R., none recovered (<0.82).

Table 1

<table>
<thead>
<tr>
<th>Age groups</th>
<th>GUM 2002</th>
<th>GUM 2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;15</td>
<td>6.7% (1/15)</td>
<td>6.7% (1/16)</td>
</tr>
<tr>
<td>15–19</td>
<td>13.7% (57/416)</td>
<td>14.2% (50/351)</td>
</tr>
<tr>
<td>20–24</td>
<td>12.6% (42/334)</td>
<td>17.4% (208/1194)</td>
</tr>
<tr>
<td>25–29</td>
<td>12.0% (14/117)</td>
<td>13.0% (128/981)</td>
</tr>
<tr>
<td>&gt;29</td>
<td>1.4% (1/70)</td>
<td>6.7% (116/1728)</td>
</tr>
<tr>
<td>Total</td>
<td>12.0% (115/952)</td>
<td>11.8% (504/4258)</td>
</tr>
</tbody>
</table>

Chlamydia in heterosexual men: could peak prevalence be in teenagers?

The CMO’s expert advisory group on Chlamydia trachomatis and the Health Protection Agency (HPA) both state that rates of chlamydial infection are highest among 16–19 year old females and 20–24 year old males. Staff based in the genitourinary medicine (GUM) department in Edinburgh have set up a number of community based initiatives, including a postal testing service, to improve access to chlamydia diagnosis for young people aged less than 25. Many of these initiatives have been targeted specifically at young men, with testing having been made available in a variety of novel settings such as young people’s sexual health and drop-in clinics, further education (FE) colleges, community pharmacies, sports centres, and a high street shop selling CDs. The work forms part of a demonstration project called Healthy Respect that is funded by the Scottish Executive with the aim of helping young people in Lothian to develop a positive attitude to their own sexualuality and that of others. The long term goal of the project is to reduce teenage pregnancies and sexually transmitted infections. Between February 2002 and December 2003, as part of the Healthy Respect project, we carried out 4838 chlamydia tests including 2321 from postal testing kits. The overall prevalence of chlamydial infection was 9.3% (10.4% in men, 9.0% in women). Somewhat to our surprise, the 15–19 year old age group showed peak prevalence in men as well as in women.

We compared this with the prevalence by age in men attending Edinburgh GUM (see table 1), anticipating this would be highest in the 20–24 year old age group. Although this was the case for 2002, in 2003 the peak prevalence was in 15–19 year olds, with the proportion of all positive tests in men as a result of the under 20s increasing significantly from 10.1% (51/504) in 2002 to 14.8% (74/500) in 2003 (χ² 5.05; p = 0.025).

There is no doubt that in men, the age group 20–24 accounts for the highest number of cases diagnosed, but our data raise the possibility that either there has been under diagnosis of cases in younger men or that there is a trend towards younger transmission. Although we only report on 2 years’ data, it will be essential to monitor ensuing trends by concentrating efforts to include teenage men in chlamydia testing programmes.

H Young, K Allison, K Carrick-Anderson, L Mokay, G Scott
Genitourinary Medicine Department, Lauriston Building, Lauriston Place, Edinburgh EH3 9HA, UK
Correspondence to: Dr Gordon Scott, Genitourinary Medicine Department, Lauriston Building, Lauriston Place, Edinburgh EH3 9HA, UK: gordon.scott@hpa.scot.nhs.uk

doi: 10.1136/sti.2004.010876
Accepted for publication 17 July 2004

References


2 Health Protection Agency. Available at www.hpa.org.uk/infections/topics_az/hiv_and_sti/sti-chlamydia/epidemiology/epidemiology.htm

doi: 10.1136/sti.2003.007682
doi: 10.1136/sti.2003.008367


www.stijournal.com

J J Wade, M A Grover
Health Protection Agency London, Medical Microbiology, King’s College Hospital, Denmark Hill, London SE5 9RS, UK
Correspondence to: Dr Jeremy Wade, Health Protection Agency London, Medical Microbiology, King’s College Hospital, Denmark Hill, London SE5 9RS, UK; jim.wade@kingsch.nhs.uk

doi: 10.1136/sti.2004.010561
Accepted for publication 26 March 2004

Corrections

doi: 10.1136/sti.2003.007682
doi: 10.1136/sti.2003.008367


www.stijournal.com
STI services in the United Kingdom, how shall we cope?

A R Markos

Sex Transm Infect 2005 81: 93
doi: 10.1136/sti.2004.009829

Updated information and services can be found at:
http://sti.bmj.com/content/81/1/93.1

These include:

References
This article cites 3 articles, 3 of which you can access for free at:
http://sti.bmj.com/content/81/1/93.1#BIBL

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/