Ecological analysis of the association between high-risk population parameters and HIV prevalence among pregnant women enrolled in sentinel surveillance in four southern India states

Michel Alary,¹ A A Jayachandran,² Catherine M Lowndes,³ Jan Bradley,² Eric Demers,¹ Rajatashvra Adhikary,⁴ Mandar K Mainkar⁵

ABSTRACT

Background The HIV epidemic is very heterogeneous at the district level in the four Southern states of India most affected by the epidemic and where transmission is mainly heterosexual. The authors carried out an ecological study of the relationship between high-risk population parameters and HIV prevalence among pregnant women (ANC HIV prevalence).

Methods The data used in this study included: ANC HIV prevalence available from the National AIDS Control Organization (dependent variable); data on prevalence of HIV and other sexually transmitted infections among female sex workers (FSWs), their clients and high-risk men who have sex with men (HR-MSM) from studies carried out in 24 districts under Avahan; data on clients’ volume reported by FSWs and on the size estimates of FSWs and HR-MSM in each district; and census data. The latter two sets of data were used to estimate the percentage of female (male) adults who are FSWs (HR-MSM). The latter was also multiplied by HIV prevalence in FSWs (HR-MSM) to obtain the percentage of HIV-positive FSWs (HR-MSM) in the adult female (male) population. Linear regression was used for statistical analyses.

Results In univariate analyses, HIV (r = 0.59, p = 0.002) and HSV-2 (r = 0.49, p = 0.014) prevalence among FSWs and mean number of clients in the last week reported by FSWs (r = 0.43, p = 0.036) were significant predictors of ANC HIV prevalence. In multivariate analysis, only FSW HIV prevalence remained significant.

Conclusions This ecological study suggests that there is a link between HIV prevalence among FSWs and the spread of HIV to the general population in Southern India. Such an observation supports the rationale of interventions targeted at the sex industry.

INTRODUCTION

In concentrated HIV epidemics, like those prevailing in South Asia, it is widely accepted that preventive interventions targeted at the most at-risk populations, like female sex workers (FSWs), are key to the control of the epidemic. However, evidence for the overall impact of such interventions at the population level in South Asia mainly comes so far from mathematical modelling studies.¹ ²

One of the premises to such potential for impact of targeted interventions is that there should be a relationship between some high-risk population parameters (prevalence of HIV and other sexually transmitted infections (STIs), population size) and HIV prevalence in the general population. Despite this, very few empirical studies have so far addressed this issue. In one study that used broad international comparisons across 77 countries and vague estimates of the population size of FSWs, Tallbott found that both HIV prevalence among FSWs (based on data available from the US Census Bureau³) and the proportion of FSWs among the general population of women predicted HIV prevalence in the general adult population (using UNAIDS estimates) at the country level.⁴

Avahan, the India AIDS initiative of the Bill & Melinda Gates Foundation, is a large HIV prevention programme targeting FSWs, their clients, high-risk men who have sex with men (HR-MSM) and injection drug users in the six Indian states most affected by HIV.⁵ In the context of its evaluation, a large amount of data is collected on HIV and STI prevalence in these high-risk populations, for which district-specific size estimates are also available from programme implementation activities. We took this opportunity to carry out an ecological analysis of the relationship between high-risk population parameters and HIV prevalence among pregnant women enrolled in the sentinel surveillance system (ANC HIV prevalence) in the states of Andhra Pradesh, Karnataka, Maharashtra and Tamil Nadu in southern India, where heterosexual transmission of HIV is predominant.⁶

METHODS

Independent variables

Data from a cross-sectional survey termed the integrated biological and behavioural assessment (IBBA) were available for FSWs in 24 districts, and for their clients and HR-MSM in 16 districts.⁷ Most of these surveys were carried out in 2006, but some of them were conducted in 2004, 2005 and 2007. From these surveys, we used as independent variables the prevalence of HIV, gonorrhoea (Ng), chlamydia (Ct), syphilis, any curable STI (defined as any of Ng, Ct or syphilis) and herpes simplex type 2 (HSV-2) antibodies.

The other independent variables were the size estimates of the FSW, clients and HR-MSM populations. For FSWs and HR-MSM, these size estimates were obtained from the Avahan programme in each district and represent estimates from both the Avahan programme and Government of India. The methods used to obtain these estimates are described in detail elsewhere.⁸ Briefly, programme
implementers used variations of a nonmathematical method that involved a combination of geographic and social mapping combined with the iterative, intensive use of Delphi techniques with different key informants for FSW and HR-MSM population size estimation. The size estimates were used as absolute numbers and also expressed as a proportion of FSWs among adult women (and of HR-MSM among adult men), by dividing the absolute numbers by population data based on the 2001 Census of India. We also defined independent variables on the proportion of HIV-positive FSWs (HR-MSM) among the total adult population of women (men) by multiplying the proportion of FSWs (HR-MSM) among adult women (men) by HIV prevalence in FSWs (HR-MSM). For clients of FSWs, we used for each district the mean number of clients in the last week as reported by the FSWs in the IBBA. We also computed the total number of clients’ visits to FSWs in the last week by multiplying this mean by the FSW size estimate. Finally, we roughly estimated the proportion of the adult male population who were clients of FSWs (HR-MSM) among adult women (men) by HIV prevalence with different key informants for FSW and HR-MSM population size estimation. The size estimates were used as absolute numbers by population data based on the 2001 Census of India.9 We also de

The size estimates were used as absolute numbers by population data based on the 2001 Census of India.9 We also de

Table 1 HIV/STI prevalence among female sex workers (FSWs) in round 1 integrated biological and behavioural assessment and FSW size estimates versus HIV prevalence among urban ANC women

<table>
<thead>
<tr>
<th>Andhra Pradesh</th>
<th>ANC HIV prevalence ·</th>
<th>HIV</th>
<th>Syphilis</th>
<th>Gonorrhoea</th>
<th>Chlamydia</th>
<th>Any STI</th>
<th>HSV-2</th>
<th>FSW population size estimate</th>
<th>Percentage of FSW in female population</th>
<th>Percentage HIV+ FSW in female population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chittoor</td>
<td>0.94</td>
<td>8.0</td>
<td>10.3</td>
<td>2.5</td>
<td>3.1</td>
<td>14.4</td>
<td>80.8</td>
<td>7856</td>
<td>3.43</td>
<td>0.27</td>
</tr>
<tr>
<td>East Godavari</td>
<td>2.25</td>
<td>26.3</td>
<td>15.0</td>
<td>1.2</td>
<td>3.2</td>
<td>18.9</td>
<td>87.4</td>
<td>7238</td>
<td>2.18</td>
<td>0.57</td>
</tr>
<tr>
<td>Guntur</td>
<td>2.63</td>
<td>21.3</td>
<td>8.6</td>
<td>1.3</td>
<td>1.7</td>
<td>11.1</td>
<td>85.4</td>
<td>10372</td>
<td>2.81</td>
<td>0.60</td>
</tr>
<tr>
<td>Hyderabad</td>
<td>1.50</td>
<td>14.3</td>
<td>17.4</td>
<td>6.4</td>
<td>6.5</td>
<td>24.1</td>
<td>79.8</td>
<td>7496</td>
<td>0.71</td>
<td>0.10</td>
</tr>
<tr>
<td>Karim Nagar</td>
<td>1.81</td>
<td>21.1</td>
<td>6.4</td>
<td>1.6</td>
<td>3.0</td>
<td>10.2</td>
<td>74.2</td>
<td>2470</td>
<td>1.29</td>
<td>0.27</td>
</tr>
<tr>
<td>Prakasam</td>
<td>2.82</td>
<td>11.1</td>
<td>5.2</td>
<td>0.2</td>
<td>3.4</td>
<td>7.6</td>
<td>64.6</td>
<td>3087</td>
<td>2.32</td>
<td>0.26</td>
</tr>
<tr>
<td>Visakhapatnam</td>
<td>1.19</td>
<td>14.2</td>
<td>7.0</td>
<td>1.4</td>
<td>3.6</td>
<td>11.2</td>
<td>58.6</td>
<td>4234</td>
<td>0.94</td>
<td>0.13</td>
</tr>
<tr>
<td>Warangal</td>
<td>1.56</td>
<td>10.8</td>
<td>10.2</td>
<td>1.9</td>
<td>2.9</td>
<td>12.5</td>
<td>55.7</td>
<td>3493</td>
<td>1.99</td>
<td>0.21</td>
</tr>
<tr>
<td>Karnataka</td>
<td></td>
</tr>
<tr>
<td>Bangalore Urban†</td>
<td>1.44</td>
<td>12.7</td>
<td>12.6</td>
<td>3.6</td>
<td>6.5</td>
<td>19.4</td>
<td>68.6</td>
<td>24301</td>
<td>1.48</td>
<td>0.19</td>
</tr>
<tr>
<td>Belgaum¶</td>
<td>3.25</td>
<td>33.9</td>
<td>8.0</td>
<td>4.7</td>
<td>6.5</td>
<td>14.4</td>
<td>83.9</td>
<td>9568**</td>
<td>0.91† ‡</td>
<td>0.31</td>
</tr>
<tr>
<td>Bellary</td>
<td>0.69</td>
<td>15.7</td>
<td>5.2</td>
<td>2.7</td>
<td>4.1</td>
<td>11.0</td>
<td>70.8</td>
<td>3852</td>
<td>2.05</td>
<td>0.32</td>
</tr>
<tr>
<td>Mysore ‡</td>
<td>2.00</td>
<td>26.1</td>
<td>24.9</td>
<td>5.4</td>
<td>10.8</td>
<td>33.6</td>
<td>64.4</td>
<td>1950</td>
<td>0.69</td>
<td>0.18</td>
</tr>
<tr>
<td>Shimoga</td>
<td>0.69</td>
<td>9.7</td>
<td>4.0</td>
<td>1.3</td>
<td>5.6</td>
<td>10.6</td>
<td>59.6</td>
<td>1567</td>
<td>0.97</td>
<td>0.09</td>
</tr>
<tr>
<td>Maharashtra</td>
<td></td>
</tr>
<tr>
<td>Kolhapur</td>
<td>2.13</td>
<td>33.0</td>
<td>27.0</td>
<td>4.3</td>
<td>5.2</td>
<td>30.4</td>
<td>83.3</td>
<td>1019</td>
<td>0.35</td>
<td>0.12</td>
</tr>
<tr>
<td>Mumbai§§</td>
<td>1.16</td>
<td>20.3</td>
<td>10.4</td>
<td>6.6</td>
<td>6.9</td>
<td>20.3</td>
<td>70.9</td>
<td>32575</td>
<td>1.05</td>
<td>0.21</td>
</tr>
<tr>
<td>Parbhani</td>
<td>0.63</td>
<td>16.1</td>
<td>11.5</td>
<td>1.9</td>
<td>2.0</td>
<td>13.2</td>
<td>52.2</td>
<td>2135</td>
<td>1.85</td>
<td>0.30</td>
</tr>
<tr>
<td>Pune§§</td>
<td>2.33</td>
<td>38.0</td>
<td>35.5</td>
<td>6.2</td>
<td>6.9</td>
<td>44.1</td>
<td>87.1</td>
<td>7223</td>
<td>0.63</td>
<td>0.24</td>
</tr>
<tr>
<td>Thane§§</td>
<td>1.50</td>
<td>12.9</td>
<td>6.9</td>
<td>2.9</td>
<td>8.9</td>
<td>16.7</td>
<td>43.2</td>
<td>17254</td>
<td>1.11</td>
<td>0.14</td>
</tr>
<tr>
<td>Yevatmal</td>
<td>1.31</td>
<td>37.3</td>
<td>51.0</td>
<td>4.6</td>
<td>8.5</td>
<td>57.5</td>
<td>100.0</td>
<td>969</td>
<td>0.80</td>
<td>0.30</td>
</tr>
<tr>
<td>Tamil Nadu</td>
<td></td>
</tr>
<tr>
<td>Chennai</td>
<td>0.25</td>
<td>2.2</td>
<td>11.3</td>
<td>0.3</td>
<td>1.8</td>
<td>12.6</td>
<td>34.6</td>
<td>17392</td>
<td>1.41</td>
<td>0.03</td>
</tr>
<tr>
<td>Coimbatore</td>
<td>0.57</td>
<td>6.3</td>
<td>11.9</td>
<td>2.2</td>
<td>2.4</td>
<td>14.5</td>
<td>58.9</td>
<td>1593</td>
<td>0.19</td>
<td>0.01</td>
</tr>
<tr>
<td>Dhamapurí</td>
<td>0.69</td>
<td>12.4</td>
<td>10.7</td>
<td>0.5</td>
<td>4.3</td>
<td>14.0</td>
<td>72.1</td>
<td>4802</td>
<td>3.79</td>
<td>0.47</td>
</tr>
<tr>
<td>Madurai</td>
<td>0.50</td>
<td>4.3</td>
<td>11.1</td>
<td>0.0</td>
<td>0.9</td>
<td>11.9</td>
<td>52.2</td>
<td>7000</td>
<td>1.69</td>
<td>0.07</td>
</tr>
<tr>
<td>Salem</td>
<td>2.50</td>
<td>12.5</td>
<td>7.5</td>
<td>1.7</td>
<td>3.7</td>
<td>10.8</td>
<td>62.9</td>
<td>5130</td>
<td>1.32</td>
<td>0.16</td>
</tr>
</tbody>
</table>

*Mean of yearly prevalence from 2004 to 2007.
†FSW estimate/urban female 15−49×100, Census 2001.
‡Percentage of HIV-positive FSW in the total adult (15−49) female population.
§FSW STI prevalence weighted for Bangalore Urban: weight=75% for Bangalore U-SB and 25% for Bangalore U-BB.
¶HIV prevalence (mean of rural+urban).
**Size estimate in both urban and rural areas because Belgaum is a CORRIDOR district (FSW intervention in both rural and urban areas).
† ‡FSW estimate/rural+ urban female 15−49×100, Census 2001 (CORRIDOR district).
† ‡†FSW HIV/STI prevalence of Mysore IBBA round 1.
§§FSW HIV/STI prevalence weighted by the number of respondents in each FSW category.
As we did for the independent variables, we considered ANC HIV prevalence for urban areas, with the exception of Belgaum, where the overall district prevalence was used. In the analyses using HR-MSM parameters, for the data collected over two different districts, the ANC HIV prevalence was estimated by weighting the mean 2004–07 prevalence according to the relative population size of women aged 15–49 in the two districts. Tables 1 also show the actual values of the dependent variable in the univariate analysis to a negative non-significant correlation (r = 0.636). To explore the association between the mean number of clients and ANC HIV prevalence went from a positive significant correlation in the univariate analysis to a negative non-significant association in the multivariate analysis, we examined the relationship between ANC HIV prevalence and mean number of clients in the last week reported by the FSWs, and their clients, whereas table 3 shows the corresponding values for analyses involving HR-MSM parameters.

Statistical analyses

We carried out univariate linear regression relating each of the independent variables to ANC HIV prevalence at the district level. There were 24 observations for all the analyses involving FSW and client volume parameters, whereas the corresponding number was 16 for the two other populations. All independent variables with a p value <0.10 were then entered in a multivariate regression model.

RESULTS

Table 4 shows the results of the univariate linear regression analyses. HIV and HSV-2 prevalence among FSWs as well as the mean number of clients in the last week reported by the FSWs were significantly associated with ANC HIV prevalence (p values of 0.0022, 0.0142 and 0.0362, respectively). Figure 1A shows the scatter plot and least-square regression line for the relation in the multivariate analysis, with an R² of 0.1441. As HIV and HSV-2 prevalence among FSWs were strongly correlated (r = 0.7524, p < 0.0001), we excluded the latter from multivariate analysis. In the model, the beta coefficients were 0.04475 for HIV prevalence among FSWs, –0.01108 for the mean number of clients in the last week reported by the FSWs, and 1.05365 for the proportion of HIV-positive FSWs in the total adult female population, with p values of 0.0535, 0.2457 and 0.1844, respectively. The R² was only slightly higher than for the univariate model with HIV prevalence in FSWs as the dependent variable, at 0.3821, and the addition of the two other variables to the model was not statistically significant (p = 0.636). To explore why the association between the mean number of clients and ANC HIV prevalence went from a positive significant correlation in the univariate analysis to a negative non-significant association in the multivariate analysis, we examined the relationship...
between HIV FSW prevalence and clients parameters and found that it was indeed significantly correlated with the mean number of clients in the last week ($r=0.6660$, $p<0.0002$), and also with HIV prevalence among clients ($r=0.6658$, $p=0.0049$). Given these observations, our final model for predicting ANC HIV prevalence, with the set of independent variables considered, is the univariate analysis with FSW HIV prevalence as the independent variable.

DISCUSSION

In one of the first studies on this issue, we found a significant association between HIV prevalence among FSWs and HIV prevalence among pregnant women at the ecological level of 24 districts over four Southern states of India. We also found an association between HSV-2 prevalence among FSWs and ANC HIV prevalence, but it was entirely due to a very strong ecological association between HIV and HSV-2 prevalence among FSWs. Adding another piece of evidence supporting the strong biological interaction between HIV and HSV-2.11

HIV prevalence among clients (r

Table 3 HIV/STI prevalence among high-risk men who have sex with men (HR-MSM) in round 1 integrated biological and behavioural assessment and HR-MSM size estimates versus HIV prevalence among urban ANC women

Andhra Pradesh	East Godavari	2.25	22.2	13.0	0.0	1.0	13.9	77.7	1825	0.55	0.12
Gunrur	2.63	13.1	3.5	0.4	1.4	5.3	29.1	2770	0.74	0.10	
Hyderabad	1.50	24.7	15.7	0.9	2.0	18.3	69.0	5030	0.45	0.11	
Visakhapatnam	1.19	9.3	5.6	0.5	1.2	7.2	37.0	1607	0.34	0.03	
Warangal	1.56										

Karnataka	Bangalore Urban	1.44	18.9	11.1	0.9	3.4	12.0	34.2	5461	0.28	0.06
Belgaum	3.25	10.6	10.3	0.0	9.2	49.1	2026	0.18	0.02		
Bellary	0.69	30.7	22.7	0.9	2.3	20.9	59.2	551	0.28	0.08	
Mysore	2.00	23.0	23.0	1.0	0.0	24.0	62.0	760	0.26	0.06	
Shimoga	0.89	10.1	10.5	0.0	1.0	10.5	70.2	348	0.21	0.02	
Maharashtra	Mumbai-Thane	1.29	10.2	6.5	0.3	4.4	10.8	43.1	19808	0.32	0.03
Pune	2.33	17.4	14.6	0.4	2.0	16.6	48.3	3200	0.25	0.04	
Tamil Nadu	Chennai	0.25	4.8	12.9	0.3	0.7	13.8	31.9	9171	0.71	0.03
Coimbatore	0.57	6.5	14.5	0.0	0.8	15.1	27.3	1539	0.18	0.01	
Madurai	0.50	22.3	17.8	0.0	1.1	18.8	40.3	1352	0.32	0.07	
Salem	2.50	5.5	12.2	0.0	0.3	12.4	14.7	2458	0.61	0.03	

*Mean of yearly prevalence from 2004 to 2007.
† (HR-MSM estimate/urban male 15—49) × 100, Census 2001.
‡ (HR-MSM estimate/rural + urban male 15—49) × 100, Census 2001 (CORRIDOR district).
§ The ANC prevalence is weighted by the total population for the 15—49 age group in Mumbai and Thane (Census 2001).
ANC and FSW HIV prevalence could be due to a higher proportion of FSWs among HIV-infected pregnant women in districts with a high ANC HIV prevalence compared with those with a lower one.

There are several possible reasons why we did not find an association between HIV prevalence in pregnant women and the FSW population size estimates. First, such estimates are very difficult to make, as there is no standard method for it and that the universe of sex work may not be even defined the same way in different studies. Secondly, some segments of the FSW population are more difficult to capture than others (overt vs hidden FSWs), and the ability to capture them may vary from one site to the other. Second, there was no standardisation across Avahan districts for the methods used for size estimates. Third, even in the presence of valid estimates, FSW population size per se may not be a key variable for the heterosexual spread of HIV to the general population. Indeed, it may well be that the total number of commercial sex acts and the nature of the sexual networks involved are more important. In addition, a small number of high volume FSWs with high HIV prevalence may contribute more to the HIV spread than a larger number of FSWs with lower HIV prevalence and smaller number of clients in environments where the demand for commercial sex is similar, because the proportion of commercial sex acts involving an HIV-positive FSW will be larger in the first scenario, thus leading to more transmission events to women of the general population through the clients bridge. Nevertheless, we found a borderline significant univariate association between the proportion of HIV-positive FSWs in the total adult female population and ANC HIV prevalence, thus suggesting a role for the size of the HIV-infected FSW population in HIV spread to the general population, as well as possible differential use of commercial sex services across the studied districts. Finally, as there has been a reported decline over time in ANC HIV prevalence in the Southern states of India that was somewhat differential between the states and widely attributed to interventions targeting FSWs, it is also possible that our study comes too late in the course of the HIV epidemic in India to be able to identify the link between number of FSWs and HIV prevalence in the general population, that may have been present before the implementation of preventive interventions targeting FSWs.

Surprisingly as this population constitutes the transmission link between FSWs and women of the general population, we did not find any association between ANC HIV prevalence and the independent variables related to clients of FSWs in the multivariate analysis. However, the observations that the positive univariate association between ANC HIV prevalence and clients’ volume per FSW appeared to be mediated by the association between the latter and FSW HIV prevalence (such association was also found in an analysis of the same data at the individual level and that HIV prevalence among both FSWs and their clients were significantly correlated, support the third hypothesis mentioned above to explain the lack of association between FSW size estimates and ANC HIV prevalence. The lack of association between our other clients’ volume estimates and ANC HIV prevalence could also be due to the uncertainties in the estimation of the size of the FSW population (see above) on which they were all based. The lack of association between HIV/STI prevalence among clients and our main dependent variable could be due to lack of power, as these analyses used only 16 districts. It could also be due to the fact that it proved very difficult to recruit representative samples of clients in the IBBA and that refusal rates were high at over 50% in most IBBA districts. These factors could indeed have led to biased HIV/STI prevalence estimates in this population, with even differential biases across the districts.

It is less surprising to see the absence of association between our dependent variable and HR-MSM parameters. Indeed, even if many of them also have sex with women, they may not play such a large role in HIV transmission to the general population in a context where heterosexual transmission is predominant. In addition, the definition of HR-MSM eligibility was not the same across all IBBA districts. As the sampling frame for the IBBA only included HR-MSM, it is also possible that other less homosexually active MSM constitute a more important bridging group for HIV transmission to the general population because they are more heterosexually active than HR-MSM. Finally, as for the clients of FSWs, there could have been a power issue.

In addition to the limitations mentioned above, our study may also have suffered from the problems inherent to ecological studies, including the ecological bias and lack of appropriate control for confounding. Nevertheless, ecological studies can be useful to generate hypotheses and sometimes, as, in the present study, they can be the only feasible approach to address certain research questions. In the field of HIV, ecological studies have been particularly useful to first identify the protective role of male circumcision, which was further confirmed by meta-analyses of numerous observational studies, and ultimately by clinical trials.
In conclusion, this study suggests that there is a link between HIV prevalence among FSWs and the spread of HIV to the general population in the Southern Indian states of Andhra Pradesh, Karnataka, Maharashtra and Tamil Nadu. Such an observation supports the rationale of interventions targeted at the commercial sex milieu, such as Avahan. Our results also underline the importance of developing and standardising improved methods for size estimates of the most at-risk populations in the context of concentrated HIV epidemics.

Acknowledgements We thank the Avahan lead implementing partners, Family Health International, Hindustan Latex Family Planning Promotion Trust, International HIV/AIDS Alliance, Karnataka Health Promotion Trust (KHPT), Pathfinder International and Voluntary Health Services, for providing data on FSW and high-risk MSM population size estimates and KHPT for providing the HIV/STI prevalence data from the IBBA surveys carried out in Karnataka state. MA is a national researcher of the Fonds de la Recherche en Santé du Québec, Canada (grant no 8722).

Contributors MA designed the study, supervised the data analyses and wrote the manuscript. AAJ prepared the database for analysis by extracting data from different sources and contributed to the data analysis. CML contributed to the study design and provided extensive input to the preparation of the manuscript. JB contributed to the study design and provided the IBBA data used in this study for the districts in Andhra Pradesh, Maharashtra and Tamil Nadu. MKM contributed to the study design and provided the IBBA data used in this study for the districts in Andhra Pradesh, Maharashtra and Tamil Nadu. All the authors provided comments on initial versions of the manuscript and approved its final content.

Funding This research was funded by the Bill & Melinda Gates Foundation. The views expressed herein are those of the authors and do not necessarily reflect the official policy or position of the Bill & Melinda Gates Foundation.

Competing interests None.

Ethics approval Ethics approval was provided by the ethics committee of the Centre hospitalier affilié universitaire de Québec.

Provenance and peer review Commissioned; not externally peer reviewed.

Key messages

- We found a significant ecological association between HIV prevalence among pregnant women enrolled in the sentinel surveillance system and HIV prevalence among female sex workers in 24 districts of four southern Indian states.
- This association may reflect the central role of female sex workers and their clients in the transmission dynamics of HIV to the general population.
- This observation supports the rationale of interventions targeted at the commercial sex milieu, such as Avahan.

Figure 1 Scatter plot and predicted values according to univariate linear regression models relating HIV prevalence in the ANC population (dependent variable) and: (A) HIV prevalence among female sex workers (FSWs) ($r = 0.5946; R^2 = 0.3535; \text{HIV (ANC)} = 0.66827 + 0.04822 \text{ HIV (FSW)}$); (B) herpes simplex type 2 (HSV-2) prevalence among FSWs ($r = 0.4937; R^2 = 0.2437; \text{HIV (ANC)} = 0.29325 + 0.02626 \text{ HSV-2 (FSW)}$); (C) mean number of clients in the last week reported by FSWs ($r = 0.4294; R^2 = 0.1844; \text{HIV (ANC)} = 0.47883 + 0.10869 \text{ (mean number of clients)}$); (D) the proportion of HIV-positive FSWs among the adult female population ($r = 0.3796; R^2 = 0.1441; \text{HIV (ANC)} = 1.02945 + 2.08035 \% \text{ HIV + FSW in female population}$), in 24 districts of Andhra Pradesh, Maharashtra, Tamil Nadu and Karnataka.
References

Ecological analysis of the association between high-risk population parameters and HIV prevalence among pregnant women enrolled in sentinel surveillance in four southern India states

Michel Alary, A A Jayachandran, Catherine M Lowndes, Jan Bradley, Eric Demers, Rajatashuvra Adhikary and Mandar K Mainkar

Sex Transm Infect 2010 86: i10-i16
doi: 10.1136/sti.2009.038323

Updated information and services can be found at:
http://sti.bmj.com/content/86/Suppl_1/i10

These include:

References
This article cites 23 articles, 4 of which you can access for free at:
http://sti.bmj.com/content/86/Suppl_1/i10#BIBL

Open Access
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non commercial and is otherwise in compliance with the license. See: http://creativecommons.org/licenses/by-nc/2.0/ and http://creativecommons.org/licenses/by-nc/2.0/legalcode.

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Open access (223)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/