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ABSTRACT
Objectives Population-based HIV testing surveys have
become central to deriving estimates of national HIV
prevalence in sub-Saharan Africa. However, limited
participation in these surveys can lead to selection bias.
We control for selection bias in national HIV prevalence
estimates using a novel approach, which unlike
conventional imputation can account for selection on
unobserved factors.
Methods For 12 Demographic and Health Surveys
conducted from 2001 to 2009 (N=138 300), we predict
HIV status among those missing a valid HIV test with
Heckman-type selection models, which allow for
correlation between infection status and participation in
survey HIV testing. We compare these estimates with
conventional ones and introduce a simulation procedure
that incorporates regression model parameter uncertainty
into confidence intervals.
Results Selection model point estimates of national HIV
prevalence were greater than unadjusted estimates for
10 of 12 surveys for men and 11 of 12 surveys for
women, and were also greater than the majority of
estimates obtained from conventional imputation, with
significantly higher HIV prevalence estimates for men in
Cote d’Ivoire 2005, Mali 2006 and Zambia 2007.
Accounting for selective non-participation yielded 95%
confidence intervals around HIV prevalence estimates
that are wider than those obtained with conventional
imputation by an average factor of 4.5.
Conclusions Our analysis indicates that national HIV
prevalence estimates for many countries in sub-Saharan
African are more uncertain than previously thought, and
may be underestimated in several cases, underscoring
the need for increasing participation in HIV surveys.
Heckman-type selection models should be included in
the set of tools used for routine estimation of HIV
prevalence.

INTRODUCTION
Accurate estimates of HIV prevalence are critical
for tracking the epidemic, designing and evaluating
prevention and treatment programmes, and esti-
mating resource needs.1–6 In sub-Saharan Africa,
home to about two-thirds of the worldwide 33
million people living with HIV,1 national
population-based surveys7–9 have become an essen-
tial data source for estimating HIV prevalence in
many countries.10–12 A potential threat to the val-
idity of survey-based prevalence estimates is that
not all individuals eligible to participate in a
survey can be contacted, and some who are con-
tacted do not consent to HIV testing. Incomplete

participation in testing can lead to selection bias,
and a recent paper found evidence for substantial
downward bias in existing national HIV prevalence
estimates for Zambian men due to selective survey
non-participation.13 The evaluation of possible
bias in HIV prevalence estimates for other coun-
tries in sub-Saharan Africa is thus important for
HIV research and policy.
Previous authors have suggested that non-

participation may lead to bias in HIV prevalence
estimates,10 14 15 but official estimates of HIV
prevalence in sub-Saharan Africa rely heavily on
population-based surveys, which often have low
participation rates.1 An analysis of the
Demographic and Health Surveys (DHS), which
are the most common nationally representative
surveys for HIV prevalence in sub-Saharan Africa,
reveals average rates of non-participation in HIV
testing of 23% for adult men and 16% for adult
women in the region, with a high of 37% for men
in Zimbabwe 2005–2006 and a low of 3% for
women in Rwanda 2005,16 and the most recent
national population-based survey in South Africa
reported an overall non-participation rate of 32%
for HIV testing among adults.7 Analyses of the
DHS have adjusted HIV prevalence estimates for
testing non-participation by imputing missing
HIV test results with probit regressions, control-
ling for differences in observed characteristics
between testing participants and non-participants,
such as gender, urban residence, wealth and indica-
tors of sexual behaviour, as recommended by
WHO.16–18 Based on this conventional imputation
approach, non-participants were estimated to have
higher HIV prevalence than participants in about
half of the DHS examined, but this did not result
in substantially different estimates of overall HIV
prevalence when compared with the complete-case
estimates that ignored missing observations.16

These results have been interpreted to mean that
non-participation in HIV testing surveys is likely
to have minimal impact on prevalence esti-
mates.16 19 However, the conventional imputation
approach has two important limitations. First, it
assumes that no unobserved variables associated
with HIV status influence participation in HIV
testing. Second, it ignores regression parameter
uncertainty in the imputation model, resulting in
confidence intervals (CI) that are too small.
The first limitation of conventional imputation

is that non-participants are assumed to be ‘missing
at random’, implying that the expected HIV status
of non-participants is the same as that for
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participants with the same measured covariates.20 However, if
any unobserved variable is correlated with testing and HIV
status, this condition will be violated. In particular, HIV status
itself may influence participation.15 21 Individuals who know
that they are HIV-positive (because they have tested in the
past) may fear stigma, exclusion or abuse if others learn about
their HIV status.22 23 Individuals who suspect that they are
HIV-positive (eg, based on past sexual behaviour) may fear con-
firmation of their suspicions.24 The limited available empirical
evidence supports the hypothesis that HIV status correlates
with participation. A longitudinal study in Malawi showed
that among persons aware of a previous HIV test result those
who had tested HIV-positive were 4.6 times less likely to
consent to a new HIV test than those who had tested
HIV-negative.15 In South Africa, a population-based, longitu-
dinal study found that HIV-positive individuals were substan-
tially less likely to consent to an HIV test than HIV-negative
individuals, and that among HIV-positive individuals those
who certainly knew their status were least likely to participate
in testing.21

To address these issues, Bärnighausen et al13 estimated HIV
prevalence in the Zambian 2007 DHS with a Heckman-type
selection model. This approach can control for correlation
between HIV status and HIV testing participation that remains
after selection on observed characteristics has been taken into
account. The national HIV prevalence estimate in adult
Zambian men was 21% after correcting for selection on unob-
served factors, compared with 12% in those with valid HIV
tests or based on conventional imputation.

This study aims to derive adjusted estimates of national HIV
prevalence in other sub-Saharan African countries using
Heckman-type selection models to correct for selective non-
participation in nationally representative surveys. It also
employs a novel method for computing 95% CI around
imputation-based HIV point estimates of prevalence that incor-
porates regression parameter uncertainty, which more accur-
ately reflects the additional uncertainty introduced when
imputing HIV status.

METHODS
Survey data
We examined data from 24 DHS (table 1).25 A typical survey
involved a two-stage sampling design stratified by region and
urban versus rural setting.25 26 Interviewing teams first com-
pleted a 'household' questionnaire with one household member
to establish which household members were eligible for an
‘individual’ interview and for HIV testing. Members of the
interviewing team then elicited informed consent for HIV
testing from the eligible household members and conducted
the tests. A typical survey team included a team leader, a field
editor and 3–6 interviewers who were usually matched to the
gender of eligible participants (table 1). In some surveys, health
professionals travelled with teams to conduct HIV testing,
while in others interviewers were trained to obtain consent and
blood samples (table 1).

Models to estimate HIV prevalence
We compared three strategies for handling missing HIV test
results when estimating HIV prevalence from DHS data, follow-
ing the analytic approach in Bärnighausen et al13 and extending
it to improve the computation of CI. These models included: (1)
an unadjusted complete-case analysis in which missing observa-
tions are ignored and prevalence is calculated among those with
valid HIV tests, (2) a conventional imputation approach that

imputes missing HIV status conditional on observed covariates
using a probit regression and (3) a Heckman-type selection model
approach, which can correct for selection on unobserved factors
when imputing HIV status for missing observations. Eligible
individuals were missing valid HIV test results in the DHS for
two main reasons: (1) the individual was successfully contacted
but refused to consent to an HIV test or (2) the interview team
failed to contact or interview the individual. For both conven-
tional imputation and selection modelling approaches, we ran
separate regressions to predict missing HIV status in either the
‘non-consent’ or ‘non-contact’ groups.

Although uncommon in the biomedical literature, Heckman-
type selection models have been widely used for more than
3 decades in economics and other social sciences to estimate
regression coefficients in the presence of missing data pro-
blems.27 28 The selection model used in this analysis is a bivariate
probit regression comprised of a selection equation that predicts
HIV test participation and an outcome equation that predicts
HIV status, linked through a correlation parameter, ρ, that reflects
covariance between HIV status and testing participation, condi-
tional on observed covariates.13 27 A negative estimate of
ρ implies that HIV-positive individuals were less likely to partici-
pate in HIV testing than HIV-negative individuals, all else being
equal, and in this case the model will predict higher probabilities
of being HIV-positive among non-participants. To improve the
identification of the model, selection variables subject to an exclu-
sion restriction are included in the selection equation. The exclu-
sion restriction requires that the selection variables affect HIV
testing participation but are not correlated with HIV status. We
accounted for the complex survey design when estimating regres-
sion covariance matrices and used household sampling weights to
obtain national representative prevalence estimates (see online
technical appendix and reference 13 for details).

Selection variables
We used the same selection variables as Bärnighausen et al to
predict participation in HIV testing within Heckman-type
selection models.13 For individuals who completed an individ-
ual interview but refused to consent to an HIV test (consent
regressions), the identity of the interviewer who conducted the
individual questionnaire was chosen as the selection variable
based on a long line of work in the survey sciences showing
that interviewer characteristics (eg, motivation, extraversion,
experience with HIV testing and attitudes about HIV research)
can influence consent to testing.29–31 The DHS surveys in this
study varied in terms of which survey team members were
responsible for obtaining consent and blood samples for HIV
testing, which we have grouped into four categories (table 1).25

For surveys that included interviewers who did not obtain
consent and conduct testing, these interviewers could affect
consent through their impact over the course of the lengthy
individual interview on respondents’ confidence in the survey
process, or attitudes towards the survey team or participating
in HIV research.

For individuals who were eligible to participate but could not
be contacted or refused to be interviewed (contact regressions),
the identity of the interviewer who conducted the household
interview was chosen as one of two selection variables, as
these interviewers may differ in their ability to obtain informa-
tion on when the missing individual would return, in the fre-
quency of their follow-up visits or their ability to obtain
consent for the individual interview. We included a second
selection variable, indicating whether or not the household was
visited on the first day that a team conducted interviews in a
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cluster, since households visited earlier would have more oppor-
tunities to be revisited in the event an eligible member was
absent on the first visit.

A key assumption of our approach is that the identity of the
survey interviewer and the day of the survey that a household
is first visited correlate with testing but not with HIV status.
We tested the statistical significance of the association between
the selection variables and HIV testing in each consent regres-
sion and each contact regression, separately by survey and sex,
using Wald tests with a two-sided p value of 0.05. It is highly
implausible that the identity of the interviewer in a DHS
survey could causally determine respondent HIV status at the
time of the interview,29 and we controlled for observed factors
that were used to match interviewers to respondents, such as
region and urban setting, which could induce non-causal associ-
ation between interviewer identity and the HIV status of
potential survey participants.

Uncertainty estimation
Previous approaches to imputing HIV status for missing observa-
tions in the DHS have focused on sampling uncertainty condi-
tional on the estimated regression equations when calculating
standard errors (SE) or 95% CI for estimates of HIV preva-
lence.13 16 17 This approach overstates the precision of
imputation-based HIV prevalence estimates because it ignores
estimation uncertainty about the imputation regression para-
meters. We incorporated this additional source of uncertainty
with a parametric simulation approach for the conventional

imputation and selection model-based imputation strategies.32 33

The sampling distribution for predicted prevalence among those
without a valid HIV test was approximated by calculating preva-
lence from imputed HIV status for each of the 10 000 regression
parameter sets drawn from a multivariate normal distribution
parameterised by the maximum likelihood estimates for the
regression coefficients and their covariance matrix. To obtain CI
for national prevalence estimates, the 10 000 draws from the sam-
pling distribution for imputed prevalence among non-participants
were combined with 10 000 draws for prevalence among those
with a valid HIV test, which were simulated from a binomial dis-
tribution defined by the complete-case analysis. We induced cor-
relation between these two sets of prevalence values using a
copula method34 with correlation coefficients obtained from
bootstrapped prevalence estimates in a subset of surveys (further
details are described in the online technical appendix). We con-
ducted all statistical analyses in Stata V.11 (StataCorp, College
Station, Texas, USA) and prepared figures with R V.2.11.1
(R Foundation for Statistical Computing, Vienna, Austria).

RESULTS
Final survey sample
Our final analysis included results from 12 of the 24 DHS
surveys that we examined (table 1) as the selection model
could not be used in several cases. DHS surveys for Mali 2001,
Democratic Republic of Congo 2007 and Zambia 2001–2002
were missing unique identifiers linking an individual’s question-
naire responses to their HIV test results or were missing an

Table 1 HIV testing strategies and personnel responsibilities in 24 Demographic and Health Surveys (DHS) as described in DHS survey reports,
2001–2009, with HIV testing participation rates for adult men and women.

HIV testing strategy and personnel
Pr.
HH*

No. of
teams

No. of
interviewers†

No. of
testers‡

% Participating§

Country Year Men Women

(1) Consent on individual questionnaire; interviewers
conducted HIV testing

Cote d’Ivoire 2005 1/1 10 2F, 2M – 76 79
Malawi 2004 1/3 22 4–5F, 1M (2–3) 63 70
Tanzania 2003–2004 1/1 11 4F, 1M – 77 84
Tanzania 2007–2008 1/1 14 4F, 1M – 80 90
Zimbabwe 2005–2006 1/1 14 3–4F, 2–3M – 63 76

(2) Consent on household questionnaire; interviewers
conducted HIV testing

Lesotho 2004 1/2 12 3F, 1M – 68 81
Liberia 2007 1/1 19 2F, 2M – 81 88
Sierra Leone 2008 1/2 24 2F, 1M – 87 90
Zambia 2007 1/1 12 3F, 3M – 72 77

(3) Consent on household questionnaire; subset of
interviewers conducted HIV testing

Cameroon 2004 1/2 14 3F, 1M (≥2) 90 92
Ethiopia 2005 1/2 30 4F, 2M (2) 76 83
Mali 2006 1/3 25 3 (2) 85 93
Niger 2006 1/2 20 3F, 1M (1) 84 91
Senegal 2005 1/3 15 3F, 1M (2) 75 84
Swaziland 2006–2007 1/1 10 3–4F, 1–2 M (2–3) 78 87
Rwanda 2005 1/2 15 3F, 1M (2) 96 97

(4) Consent on household questionnaire; health worker or
technician conducted HIV testing

Burkina Faso 2003 1/3 12 3F, 1M 1 86 92
Democratic Republic
of Congo

2007 1/2 234 1–3 1 86 90

Ghana 2003 1/2 15 4 1 80 89
Guinea 2005 1/2 10 4F, 1M 1 88 92
Kenya 2003 1/2 17 4F, 1M 1 70 76
Kenya¶ 2008–2009 1/2 23 4F, 2M 2 79 86
Mali 2001 1/3 25 3F 1 76 85
Zambia 2001 1/3 12 3–4F, 1M 2 73 79

*Proportion of sampled households that were eligible for HIV testing and the men’s individual questionnaire.
†Number of female and male interviewers per team. Team interviewer gender composition was not described in the reports for the Democratic Republic of Congo 2007, Mali 2006 and
Ghana 2003 surveys.
‡Number of individuals who conducted HIV testing per team. Numbers in parenthesis indicate the number of interviewers on a team who also conducted HIV testing. The symbol ‘–’
indicates that all interviewers conducted HIV testing.
§Percent participating in survey HIV testing.
¶Kenya 2008–2009 also had two voluntary counselling and testing counsellors on each team.
F, female; M, male; Pr. HH, Proportion of sampled households.
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interviewer identity variable and therefore could not be ana-
lysed. Results for Burkina Faso 2003, Cameroon 2004, Guinea
2005, Kenya 2003, Kenya 2008–2009 and Sierra Leone 2008
were excluded because the estimate of the selection model cor-
relation parameter was near its boundary (|ρ|>0.9) in at least
one regression, indicating that model parameters were not well
identified. Models with |ρ|>0.9 also typically had highly sig-
nificant p values. Last, the independent effects of region and
interviewer identity could not be estimated for Niger 2006,
Tanzania 2003–2004 and Tanzania 2007–2008 DHS.

Selection variables
Across 48 selection models (including separate regressions for
consent and contact, by sex and survey), interviewer identity
was significantly associated with HIV testing participation (at
p<0.05), even after controlling for observed factors that were
used to match interviewers to respondents such as region and
urban setting, in 46 cases. The two exceptions were the
consent regression for men (p=0.07) and for women (p=0.16)
in Swaziland 2006–2007, see online supplementary table 1.
Among the 24 contact regressions, the coefficient for the indi-
cator variable denoting whether or not a household was con-
tacted on the first day that an interviewing team visited a
cluster was only significantly associated with participation in
the Zambia 2007 women survey (see online supplementary
table 1).

Prevalence estimates
National estimates of adult HIV prevalence, by survey and separ-
ately for men and women, are depicted in figure 1 for the
complete-case, conventional imputation and Heckman-type
selection model approaches (see supplementary table 1 for more
detailed results). Selection model point estimates of national
HIV prevalence were greater than those based on a complete-
case analysis for 10 out of 12 surveys for men and 11 out of 12
surveys for women. In comparison with conventional imput-
ation, selection model point estimates were greater for eight of
12 surveys for men and 11 of 12 surveys for women. These dif-
ferences were statistically significant in three surveys—Cote
d’Ivoire 2005, Mali 2006 and Zambia 2007—which had signifi-
cant negative values for the selection model correlation param-
eter (ρ) in either the consent or contact regression for men,
indicating strong evidence of higher HIV prevalence among men
who did not participate in HIV testing. HIV prevalence esti-
mates derived from the selection modelling approach led to
changes in the sex ratio of HIV prevalence. As compared with
conventional imputation, the selection model estimated a lower
female-to-male prevalence ratio in seven surveys out of 12
surveys. However, the female-to-male prevalence ratio decreased
in five of the seven surveys that had substantial changes in HIV
prevalence point estimates, defined as a greater than one per-
centage point change for either men or women (Cote d’Ivoire,
Mali, Swaziland, Zambia and Zimbabwe).

Allowing for the possibility that factors not measured in the
DHS may influence HIV testing participation resulted in much
greater uncertainty around prevalence estimates, with 95% CI for
HIV prevalence being 4.5 times wider on average for the selection
model estimates compared with those from conventional imput-
ation. On the other hand, in most cases, the 95% CI around the
selection model estimates were substantially tighter than the
most extreme bounds possible (see in figure 1), which are derived
by assuming that all non-participants were uniformly either
HIV-negative (for the lower bound) or HIV-positive (for the
upper bound). Incorporating regression parameter uncertainty led

to 95% CI that were 1.2 times larger for the conventional imput-
ation estimates and 4.9 times larger for the selection model esti-
mates, as compared with the CI obtained for those same models
when only sampling uncertainty was accounted for and regres-
sion parameter uncertainty was ignored.

Sensitivity analyses
Sensitivity analyses of two key assumptions of the bivariate
probit selection model used in this analysis suggested that our
findings were relatively robust to deviations from key model
assumptions. First, a simulation experiment based on the
Zambia 2007 DHS, which assessed the sensitivity of the selec-
tion model to violations of its assumption that interviewer
effects on participation do not vary with respect to respondent
HIV status, indicated that the large adjustment to the HIV
prevalence estimate for men could not be explained by a viola-
tion of this assumption. Second, estimates of the correlation
parameter ρ from a semi-non-parametric selection model
(which relaxes the assumption of bivariate normality of the
error terms35) were modestly correlated with those from the
parametric model. A full description of these analyses can be
found in the online technical appendix.

DISCUSSION
Heckman-type selection models offer a means of testing and
correcting for sample selection in HIV testing surveys. We
investigated the applicability of one variant of this type of
selection model, which uses the identity of survey interviewer
and the timing of the interview, to DHS datasets from
sub-Saharan Africa. We could not apply this approach in half
the data sets we examined either because data on the selection
variables were missing or the models could not be identified.
Our analysis of the 12 DHS for which we could apply the
approach indicated that the relationship between HIV status
and participation in HIV testing may vary across surveys, but
likely leads to underestimates of prevalence in several countries.
Additionally, ignoring selection on unobserved factors with
conventional imputation approaches substantially overstates
the precision of HIV prevalence estimates in many sub-Saharan
African countries.

Among the final sample of 12 surveys, the Heckman-type
selection model results can be viewed as a sensitivity analysis
of conventional HIV prevalence estimates.36 The selection
model estimates agree with, and add credibility to, existing
prevalence estimates for countries such as Liberia, Rwanda and
Senegal. However, on average the selection model estimates had
CI that were 4.5 times larger than those from conventional
imputation, indicating that we are unable to precisely estimate
the effect that bias due to low participation rates may have on
HIV prevalence estimates in many surveys. Thus, for many
countries, including those in southern Africa, policy makers
should consider using a wider range of potential values when
making decisions that depend on national levels of HIV preva-
lence. Last, selection model estimates resulting in significant,
large increases in estimated HIV prevalence among men in
Cote d’Ivoire, Mali and Zambia are most concerning and
suggest that renewed focus on HIV prevention in men would
be particularly justified in these countries.37

The narrow CI frequently reported around conventional esti-
mates of national HIV prevalence reflect a false precision result-
ing from the assumption that testing non-participants are
‘missing at random’.16 17 The selection model approach relaxes
this assumption as it does not assume that the correlation par-
ameter ρ equals 0 with certainty; the wider CI around selection
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model-based estimates reflect uncertainty about the strength of
the relationship between HIV status and testing. These results
offer a quantification of uncertainty around values for popula-
tion HIV prevalence that is more conservative yet more accurate
than conventional approaches16 17 and typically much narrower
than an extreme bounds approach (figure 1). The CI estimated
using our approach are also more interpretable from a sampling
theory perspective than sensitivity analyses that apply fixed
factors to existing estimates.14 15

Underestimating the uncertainty around HIV prevalence esti-
mates derived from national population-based surveys has
important implications, as it will impact the weight placed on
other sources of HIV surveillance data and overstate the preci-
sion of measures of HIV burden used in global and national
HIV policymaking. For example, in its recent report on the
global epidemic, the United Nations Joint Programme of HIV/
AIDS (UNAIDS) estimates HIV prevalence in sub-Saharan
Africa by rescaling models fit to antenatal clinic (ANC) data so
that they are compatible with population-based survey
estimates for prevalence.1 38 If there is less certainty about
estimates from population-based surveys than previously
thought, weighing ANC data more heavily in such analyses
may be appropriate. This would also have implications for esti-
mating HIV incidence, which can be derived from the epidemic

models used by UNAIDS39 or estimated from changes in HIV
prevalence between two population-based surveys.40

Adjustments of HIV prevalence estimates will also affect indi-
cators of antiretroviral treatment coverage,1 for instance, as
measured by the US President’s Emergency Plan for AIDS
Relief programme41 and model-based predictions of future HIV
trends.39

Our study has several limitations. For surveys in which
health workers or technicians obtained HIV test consent and
blood samples (table 1, category 4), we could only control for
the identities of interviewers in the selection model. Although
interviewer identity was a significant predictor of HIV testing
participation in all except one of these five surveys, the major-
ity of them had selection models with estimates of ρ near the
boundary for at least one group, suggesting model identification
problems. Future surveys should record the identities of the
individuals responsible for conducting HIV testing, in addition
to interviewer identity, to allow for broader applicability of
selection models. Bayesian methods that enable the estimation
of selection model parameters in cases like Tanzania where
maximum likelihood techniques fail to converge may also
enable wider application of these methods.

Heckman-type selection models can be sensitive to violations
of model assumptions,28 and methodological work is needed to

Figure 1 National adult HIV
prevalence estimates with 95% CI
derived from three modelling
approaches for men and women from
12 Demographic and Health Surveys
conducted in sub-Saharan Africa,
2001–2009. Women aged 15–49 years
were eligible to be tested for HIV. The
age range for men was 15–59 years,
with the exceptions of Cote d’Ivoire,
Liberia and Swaziland (15–49 years)
and Malawi and Zimbabwe
(15–54 years). HIV infection was
defined as infection with either HIV-1
or HIV-2. Apart from the selection
variables described in the text, all
other covariates were shared by the
two model components of the
selection models and the conventional
imputation probit regressions. For
‘consent’ regressions, these variables
were: age, educational attainment,
household wealth quintile as
constructed from an index of
household assets, urban setting,
region, interview language, ethnicity,
religion, marital status, high-risk sexual
behaviour in the past year, condom
use at last sex, sexually transmitted
disease in the past year, tobacco and
alcohol use, knowing someone with
AIDS, willingness to care for a family
member with AIDS, and having had a
previous HIV test. For ‘contact’
regressions, these variables were: sex,
age, education, wealth quintile, urban
setting and region (see details in online
technical appendix). ‘Extreme bounds’
assume that all those missing a valid
HIV test are uniformly HIV-positive or
HIV-negative.

Sex Transm Infect 2012;88:i17–i23. doi:10.1136/sextrans-2012-050636 i21

Supplement

 on A
pril 9, 2024 by guest. P

rotected by copyright.
http://sti.bm

j.com
/

S
ex T

ransm
 Infect: first published as 10.1136/sextrans-2012-050636 on 20 N

ovem
ber 2012. D

ow
nloaded from

 

http://sti.bmj.com/


establish diagnostic tests and robustness checks for applied
researchers. The selection model implemented here assumes
that the error terms for the selection and outcome equations
are distributed bivariate normal, and therefore relies on para-
metric assumptions for extrapolation. The plausibility of this
assumption can be tested with semi- or non-parametric selec-
tion models.42 In an initial sensitivity analysis, we found a
modest correlation between estimates for ρ obtained from a
semi-non-parametric model and the parametric model used in
our main analysis. However, as explained in the online tech-
nical appendix, further development of these methods is
needed to establish strong tests of assumption validity.

The choice of selection variables can also impact selection
model estimates,28 but we only identified one variable that
consistently predicted HIV testing. Our use of interviewer
identity as a selection variable has a behavioural justifica-
tion29 and has been used in at least three previous
studies employing Heckman-type selection models of HIV in
Africa.13 43 44 It is unlikely that interviewers could affect
respondent HIV status, and we controlled for the variables
used to match interviewers with respondents, namely region
and sex. In simulations consistent with the Zambia 2007
data, we found that violations of this assumption would be
unlikely to explain the large adjustment to prevalence esti-
mated for adult men in Zambia.

Ideally, the validity and precision of HIV prevalence esti-
mates could be improved through increased HIV testing partici-
pation. Increasing contact rates could be achieved through
renewed emphasis on revisiting households to test absent
members or encouraging individuals who are unwilling to com-
plete the questionnaire to participate in HIV testing. Improving
consent rates may be possible if an oral swab is used instead of
collecting blood45 46 and approaches such as financial incen-
tives,47 48 resampling previous refusers or offering test results
and referral to care could be investigated. A deeper understand-
ing of what characteristics predict an individual’s propensity to
test, and how they relate to HIV status, would be useful, and
more research on methods for improving HIV testing participa-
tion during large-scale surveys is needed.

In the absence of increased HIV testing participation, we rec-
ommend that Heckman-type selection models be included
among the toolkit of routine analyses when estimating HIV
prevalence, deriving epidemic indicators from HIV prevalence
or modelling the determinants of HIV status, as a check on the
robustness of conventional methods. To facilitate these efforts,
survey reports should describe interview team composition and
include unique identifiers for those responsible for contacting
households, obtaining consent and conducting HIV tests.
Common software packages implement the bivariate probit
model, including Stata, SAS and R. We also suggest that ana-
lysts incorporate parameter uncertainty when calculating CI
around imputation-based estimates. We used a parametric
simulation approach to do this;32 the bootstrap and Bayesian
algorithms could be useful alternatives in other settings.49 50

In conclusion, Heckman-type selection models provide a useful
addition to the set of tools used for the estimation of HIV preva-
lence from national surveys. In settings where they can be identi-
fied, selection models offer a means of assessing potential
problems with conventional estimates of HIV prevalence and
may suggest substantially revised estimates in some cases. Our
analysis indicates that national HIV prevalence estimates for
many countries in sub-Saharan Africa are more uncertain than
previously thought, and may be underestimated in several cases.
This suggests that more emphasis should be put on increasing

participation in HIV testing in surveys that aim to establish
national prevalence rates.

Key messages

▸ National population-based surveys that include HIV testing
are a critical source of evidence on HIV prevalence in
sub-Saharan Africa.

▸ Selection models can be used to correct HIV prevalence
estimates derived from these surveys for selection bias due
to non-participation in HIV testing.

▸ This study suggests that important uncertainty remains
around estimates of HIV prevalence in sub-Saharan Africa
and that HIV prevalence may be underestimated in several
countries.

▸ More emphasis should be placed on increasing participation
in HIV surveys.
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Web Table A 
 
The following tables present detailed HIV prevalence estimates for men and women from 12 
DHS surveys. The ‘complete case’ analysis estimate (‘Valid HIV’) is reported in the first row for 
comparison to the imputation results that appear below. Prevalence estimates for those who 
refused consent and for those who could not be contacted were imputed with either conventional 
probit regressions (‘Imputed’) or Heckman-type selection models (‘Heckman’). The ‘total’ 
estimate combines the three categories for a national estimate of adult HIV prevalence. Estimates 
of the selection model correlation parameter ρ are reported in the final column. Prevalence 
estimates are survey weighted but sample sizes (N) are unweighted. P-values testing if the 
‘selection variables’ (i.e., interviewer identities or a variable indicating whether or not a survey 
team contacted a household on the first day the team visited a cluster) were associated with 
participation are reported under each table. 
 



CotedIvoire2005

Men Imputed Heckman
N HIV (95% CI) HIV (95% CI) � (95% CI)

Valid HIV 3893 0.028 (0.021, 0.036) 0.028 (0.021, 0.036)
Predicted via consent 588 0.034 (0.030, 0.051) 0.163 (0.041, 0.403) -0.59 (-0.86, -0.04)
Predicted via contact 663 0.035 (0.028, 0.050) 0.248 (0.034, 0.685) -0.68 (-0.93, 0.02)
Total 5144 0.030 (0.024, 0.039) 0.084 (0.035, 0.184)
Consent regression p-value for interviewers < 0.001.
Contact regression p-value for interviewers < 0.001.
Contact regression p-value for first day in cluster = 0.115.

Women Imputed Heckman
N HIV (95% CI) HIV (95% CI) � (95% CI)

Valid HIV 4535 0.061 (0.052, 0.071) 0.061 (0.052, 0.071)
Predicted via consent 620 0.072 (0.062, 0.092) 0.120 (0.019, 0.327) -0.20 (-0.65, 0.36)
Predicted via contact 611 0.079 (0.068, 0.097) 0.097 (0.018, 0.264) -0.08 (-0.52, 0.40)
Total 5766 0.065 (0.057, 0.075) 0.074 (0.050, 0.119)
Consent regression p-value for interviewers < 0.001.
Contact regression p-value for interviewers < 0.001.
Contact regression p-value for first day in cluster = 0.6.

Ethiopia2005

Men Imputed Heckman
N HIV (95% CI) HIV (95% CI) � (95% CI)

Valid HIV 5118 0.009 (0.006, 0.012) 0.009 (0.006, 0.012)
Predicted via consent 905 0.017 (0.014, 0.029) 0.024 (0.000, 0.273) -0.10 (-0.97, 0.95)
Predicted via contact 749 0.013 (0.010, 0.020) 0.107 (0.010, 0.453) -0.66 (-0.93, 0.06)
Total 6772 0.010 (0.007, 0.014) 0.018 (0.008, 0.060)
Consent regression p-value for interviewers < 0.001.
Contact regression p-value for interviewers < 0.001.
Contact regression p-value for first day in cluster = 0.193.

Women Imputed Heckman
N HIV (95% CI) HIV (95% CI) � (95% CI)

Valid HIV 5953 0.017 (0.013, 0.022) 0.017 (0.013, 0.022)
Predicted via consent 843 0.029 (0.025, 0.041) 0.052 (0.003, 0.210) -0.19 (-0.72, 0.48)
Predicted via contact 345 0.027 (0.022, 0.037) 0.021 (0.000, 0.141) 0.08 (-0.65, 0.73)
Total 7141 0.018 (0.014, 0.024) 0.020 (0.013, 0.037)
Consent regression p-value for interviewers < 0.001.
Contact regression p-value for interviewers < 0.001.
Contact regression p-value for first day in cluster = 0.237.

2



Ghana2003

Men Imputed Heckman
N HIV (95% CI) HIV (95% CI) � (95% CI)

Valid HIV 4263 0.014 (0.011, 0.019) 0.014 (0.011, 0.019)
Predicted via consent 753 0.016 (0.015, 0.029) 0.000 (0.000, 0.083) 0.69 (-0.88, 1.00)
Predicted via contact 321 0.014 (0.011, 0.023) 0.001 (0.000, 0.027) 0.48 (-0.28, 0.87)
Total 5337 0.015 (0.011, 0.020) 0.011 (0.009, 0.025)
Consent regression p-value for interviewers < 0.001.
Contact regression p-value for interviewers < 0.001.
Contact regression p-value for first day in cluster = 0.865.

Women Imputed Heckman
N HIV (95% CI) HIV (95% CI) � (95% CI)

Valid HIV 5285 0.023 (0.019, 0.028) 0.023 (0.019, 0.028)
Predicted via consent 410 0.028 (0.025, 0.039) 0.446 (0.008, 0.934) -0.86 (-1.00, 0.32)
Predicted via contact 251 0.021 (0.018, 0.029) 0.041 (0.000, 0.460) -0.16 (-0.94, 0.89)
Total 5946 0.024 (0.020, 0.028) 0.053 (0.021, 0.097)
Consent regression p-value for interviewers < 0.001.
Contact regression p-value for interviewers < 0.001.
Contact regression p-value for first day in cluster = 0.9.

Lesotho2004

Men Imputed Heckman
N HIV (95% CI) HIV (95% CI) � (95% CI)

Valid HIV 2246 0.188 (0.170, 0.208) 0.188 (0.170, 0.208)
Predicted via consent 553 0.205 (0.182, 0.239) 0.243 (0.064, 0.498) -0.10 (-0.59, 0.45)
Predicted via contact 504 0.200 (0.180, 0.225) 0.145 (0.001, 0.615) 0.15 (-0.79, 0.88)
Total 3303 0.193 (0.175, 0.213) 0.191 (0.136, 0.297)
Consent regression p-value for interviewers < 0.001.
Contact regression p-value for interviewers < 0.001.
Contact regression p-value for first day in cluster = 0.966.

Women Imputed Heckman
N HIV (95% CI) HIV (95% CI) � (95% CI)

Valid HIV 3032 0.260 (0.242, 0.278) 0.260 (0.242, 0.278)
Predicted via consent 514 0.269 (0.248, 0.295) 0.283 (0.096, 0.537) -0.03 (-0.50, 0.45)
Predicted via contact 212 0.258 (0.239, 0.280) 0.314 (0.080, 0.629) -0.11 (-0.58, 0.43)
Total 3758 0.261 (0.244, 0.279) 0.266 (0.225, 0.320)
Consent regression p-value for interviewers < 0.001.
Contact regression p-value for interviewers < 0.001.
Contact regression p-value for first day in cluster = 0.707.

3



Liberia2007

Men Imputed Heckman
N HIV (95% CI) HIV (95% CI) � (95% CI)

Valid HIV 5241 0.012 (0.009, 0.015) 0.012 (0.009, 0.015)
Predicted via consent 768 0.014 (0.014, 0.024) 0.018 (0.001, 0.091) -0.06 (-0.56, 0.48)
Predicted via contact 461 0.013 (0.011, 0.019) 0.011 (0.000, 0.071) 0.05 (-0.52, 0.59)
Total 6470 0.012 (0.010, 0.016) 0.012 (0.009, 0.023)
Consent regression p-value for interviewers < 0.001.
Contact regression p-value for interviewers < 0.001.
Contact regression p-value for first day in cluster = 0.581.

Women Imputed Heckman
N HIV (95% CI) HIV (95% CI) � (95% CI)

Valid HIV 6533 0.019 (0.016, 0.023) 0.019 (0.016, 0.023)
Predicted via consent 561 0.023 (0.021, 0.031) 0.074 (0.010, 0.237) -0.34 (-0.72, 0.20)
Predicted via contact 351 0.022 (0.019, 0.028) 0.047 (0.004, 0.169) -0.21 (-0.65, 0.34)
Total 7445 0.019 (0.016, 0.023) 0.024 (0.017, 0.038)
Consent regression p-value for interviewers < 0.001.
Contact regression p-value for interviewers < 0.001.
Contact regression p-value for first day in cluster = 0.098.

Malawi2004

Men Imputed Heckman
N HIV (95% CI) HIV (95% CI) � (95% CI)

Valid HIV 2404 0.100 (0.087, 0.116) 0.100 (0.087, 0.116)
Predicted via consent 837 0.098 (0.086, 0.128) 0.071 (0.001, 0.341) 0.14 (-0.74, 0.84)
Predicted via contact 553 0.119 (0.105, 0.143) 0.024 (0.000, 0.183) 0.53 (-0.37, 0.92)
Total 3794 0.102 (0.090, 0.120) 0.082 (0.058, 0.161)
Consent regression p-value for interviewers < 0.001.
Contact regression p-value for interviewers < 0.001.
Contact regression p-value for first day in cluster = 0.205.

Women Imputed Heckman
N HIV (95% CI) HIV (95% CI) � (95% CI)

Valid HIV 2864 0.139 (0.126, 0.153) 0.139 (0.126, 0.153)
Predicted via consent 975 0.111 (0.102, 0.137) 0.254 (0.050, 0.598) -0.41 (-0.83, 0.31)
Predicted via contact 231 0.129 (0.118, 0.148) 0.152 (0.019, 0.428) -0.08 (-0.64, 0.55)
Total 4070 0.131 (0.120, 0.147) 0.170 (0.109, 0.272)
Consent regression p-value for interviewers < 0.001.
Contact regression p-value for interviewers < 0.001.
Contact regression p-value for first day in cluster = 0.799.
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Mali2006

Men Imputed Heckman
N HIV (95% CI) HIV (95% CI) � (95% CI)

Valid HIV 3946 0.011 (0.007, 0.016) 0.011 (0.007, 0.016)
Predicted via consent 303 0.012 (0.011, 0.026) 0.032 (0.000, 0.342) -0.26 (-0.93, 0.82)
Predicted via contact 384 0.011 (0.009, 0.022) 0.177 (0.053, 0.442) -0.76 (-0.92, -0.41)
Total 4633 0.011 (0.007, 0.016) 0.027 (0.014, 0.065)
Consent regression p-value for interviewers < 0.001.
Contact regression p-value for interviewers < 0.001.
Contact regression p-value for first day in cluster = 0.946.

Women Imputed Heckman
N HIV (95% CI) HIV (95% CI) � (95% CI)

Valid HIV 4804 0.015 (0.011, 0.021) 0.015 (0.011, 0.021)
Predicted via consent 225 0.017 (0.014, 0.028) 0.366 (0.000, 0.990) -0.86 (-1.00, 0.96)
Predicted via contact 124 0.016 (0.013, 0.024) 0.184 (0.015, 0.539) -0.67 (-0.93, 0.00)
Total 5153 0.015 (0.011, 0.020) 0.035 (0.013, 0.069)
Consent regression p-value for interviewers = 0.002.
Contact regression p-value for interviewers < 0.001.
Contact regression p-value for first day in cluster = 0.114.

Rwanda2005

Men Imputed Heckman
N HIV (95% CI) HIV (95% CI) � (95% CI)

Valid HIV 4742 0.022 (0.018, 0.027) 0.022 (0.018, 0.027)
Predicted via consent 90 0.034 (0.028, 0.052) 0.138 (0.000, 0.811) -0.46 (-1.00, 0.98)
Predicted via contact 122 0.031 (0.026, 0.042) 0.010 (0.000, 0.403) 0.24 (-0.97, 0.99)
Total 4954 0.022 (0.018, 0.027) 0.024 (0.018, 0.043)
Consent regression p-value for interviewers < 0.001.
Contact regression p-value for interviewers = 0.043.
Contact regression p-value for first day in cluster = 0.847.

Women Imputed Heckman
N HIV (95% CI) HIV (95% CI) � (95% CI)

Valid HIV 5677 0.036 (0.031, 0.041) 0.036 (0.031, 0.041)
Predicted via consent 65 0.055 (0.047, 0.069) 0.268 (0.002, 0.784) -0.58 (-0.98, 0.80)
Predicted via contact 93 0.039 (0.034, 0.047) 0.209 (0.000, 0.840) -0.54 (-0.99, 0.89)
Total 5835 0.036 (0.031, 0.041) 0.042 (0.032, 0.058)
Consent regression p-value for interviewers < 0.001.
Contact regression p-value for interviewers < 0.001.
Contact regression p-value for first day in cluster = 0.546.
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Senegal2005

Men Imputed Heckman
N HIV (95% CI) HIV (95% CI) � (95% CI)

Valid HIV 3303 0.005 (0.003, 0.008) 0.005 (0.003, 0.008)
Predicted via consent 487 0.005 (0.004, 0.016) 0.035 (0.003, 0.193) -0.52 (-0.86, 0.12)
Predicted via contact 564 0.005 (0.003, 0.012) 0.014 (0.000, 0.157) -0.28 (-0.84, 0.57)
Total 4354 0.005 (0.003, 0.008) 0.009 (0.003, 0.040)
Consent regression p-value for interviewers < 0.001.
Contact regression p-value for interviewers < 0.001.
Contact regression p-value for first day in cluster = 0.127.

Women Imputed Heckman
N HIV (95% CI) HIV (95% CI) � (95% CI)

Valid HIV 4520 0.009 (0.007, 0.013) 0.009 (0.007, 0.013)
Predicted via consent 577 0.008 (0.007, 0.016) 0.052 (0.003, 0.252) -0.52 (-0.87, 0.18)
Predicted via contact 245 0.010 (0.007, 0.020) 0.033 (0.001, 0.218) -0.31 (-0.80, 0.42)
Total 5342 0.009 (0.007, 0.013) 0.015 (0.008, 0.041)
Consent regression p-value for interviewers < 0.001.
Contact regression p-value for interviewers < 0.001.
Contact regression p-value for first day in cluster = 0.333.

Swaziland2006-7

Men Imputed Heckman
N HIV (95% CI) HIV (95% CI) � (95% CI)

Valid HIV 3630 0.195 (0.178, 0.212) 0.195 (0.178, 0.212)
Predicted via consent 526 0.229 (0.215, 0.248) 0.669 (0.133, 0.964) -0.73 (-0.98, 0.34)
Predicted via contact 509 0.228 (0.212, 0.247) 0.447 (0.001, 0.989) -0.42 (-0.98, 0.91)
Total 4665 0.202 (0.186, 0.218) 0.274 (0.173, 0.364)
Consent regression p-value for interviewers = 0.069.
Contact regression p-value for interviewers = 0.037.
Contact regression p-value for first day in cluster = 0.383.

Women Imputed Heckman
N HIV (95% CI) HIV (95% CI) � (95% CI)

Valid HIV 4624 0.309 (0.292, 0.326) 0.309 (0.292, 0.326)
Predicted via consent 383 0.294 (0.279, 0.313) 0.057 (0.000, 0.923) 0.54 (-1.00, 1.00)
Predicted via contact 283 0.327 (0.310, 0.344) 0.343 (0.001, 0.942) -0.03 (-0.90, 0.89)
Total 5290 0.309 (0.292, 0.325) 0.293 (0.262, 0.388)
Consent regression p-value for interviewers = 0.163.
Contact regression p-value for interviewers = 0.033.
Contact regression p-value for first day in cluster = 0.801.
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Zambia2007

Men Imputed Heckman
N HIV (95% CI) HIV (95% CI) � (95% CI)

Valid HIV 5163 0.121 (0.110, 0.133) 0.121 (0.110, 0.133)
Predicted via consent 1318 0.117 (0.110, 0.131) 0.520 (0.219, 0.825) -0.75 (-0.94, -0.23)
Predicted via contact 653 0.153 (0.141, 0.167) 0.248 (0.014, 0.697) -0.24 (-0.83, 0.60)
Total 7134 0.123 (0.114, 0.134) 0.210 (0.137, 0.297)
Consent regression p-value for interviewers < 0.001.
Contact regression p-value for interviewers < 0.001.
Contact regression p-value for first day in cluster = 0.236.

Women Imputed Heckman
N HIV (95% CI) HIV (95% CI) � (95% CI)

Valid HIV 5713 0.159 (0.145, 0.173) 0.159 (0.145, 0.173)
Predicted via consent 1400 0.158 (0.148, 0.173) 0.245 (0.075, 0.501) -0.22 (-0.65, 0.30)
Predicted via contact 283 0.172 (0.158, 0.188) 0.172 (0.013, 0.514) 0.00 (-0.64, 0.64)
Total 7396 0.159 (0.147, 0.172) 0.176 (0.137, 0.235)
Consent regression p-value for interviewers < 0.001.
Contact regression p-value for interviewers < 0.001.
Contact regression p-value for first day in cluster < 0.001.

Zimbabwe2005-6

Men Imputed Heckman
N HIV (95% CI) HIV (95% CI) � (95% CI)

Valid HIV 5555 0.145 (0.133, 0.158) 0.145 (0.133, 0.158)
Predicted via consent 1604 0.153 (0.142, 0.169) 0.197 (0.053, 0.420) -0.12 (-0.57, 0.37)
Predicted via contact 1585 0.172 (0.158, 0.188) 0.193 (0.014, 0.558) -0.06 (-0.69, 0.63)
Total 8744 0.151 (0.141, 0.164) 0.163 (0.109, 0.253)
Consent regression p-value for interviewers < 0.001.
Contact regression p-value for interviewers < 0.001.
Contact regression p-value for first day in cluster = 0.118.

Women Imputed Heckman
N HIV (95% CI) HIV (95% CI) � (95% CI)

Valid HIV 7494 0.213 (0.200, 0.226) 0.213 (0.200, 0.226)
Predicted via consent 1390 0.203 (0.194, 0.214) 0.333 (0.062, 0.677) -0.27 (-0.76, 0.41)
Predicted via contact 970 0.212 (0.202, 0.224) 0.119 (0.000, 0.840) 0.24 (-0.93, 0.97)
Total 9854 0.211 (0.200, 0.223) 0.221 (0.170, 0.327)
Consent regression p-value for interviewers < 0.001.
Contact regression p-value for interviewers < 0.001.
Contact regression p-value for first day in cluster = 0.817.
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1. Heckman-type selection model equations 

 
Dubin and Rivers described the model equations that extend Heckman’s original method to the 

case of a dichotomous outcome, such as HIV status.[1, 2] The equation that predicts participation 

in HIV testing for individual i (si) is the following probit model [3]: 

 

si

* = βsx i + φzi + ui

si =1 if si

* > 0, si = 0 otherwise 
 

where x are observed characteristics, z are selection variables subject to an exclusion restriction, 

and u is random error. HIV status hi is observed if si = 1. The equation for the HIV status of 

individual i (hi) is predicted with a second probit model: 

 

hi

* = βh x i + εi

hi =1 if hi

* > 0, hi = 0 otherwise 
 

where x are observed characteristics and ε is random error. The error terms u and ε are assumed 

to be distributed bivariate normal, and the parameter ρ = corr(u,ε) measures the magnitude and 

direction of the correlation between participation and HIV status on the probit scale after 

controlling for the variables in x. A negative value of ρ would indicate that individuals who are 

more likely to be HIV positive are less likely to participate in testing, conditional on observed 

variables. Note that the conventional imputation probit model is nested within the bivariate 

probit selection model, and it can be thought of as a selection model that assumes ρ=0 with 

certainty. 
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2. Regression variables 

 
The DHS system uses standardized questionnaires, and country specific questions are recoded to 

allow for comparisons across countries and surveys.[4] We used the same set of variables in 

conventional probit and selection model-based imputation regression models across surveys 

whenever possible, following previous work.[3] For those who completed an individual 

questionnaire, these variables included age, educational attainment, household wealth quintile as 

constructed from an index of household assets, urban setting, region, interview language, 

ethnicity, religion, marital status, high-risk sexual behavior in the past year, condom use at last 

sex, sexually transmitted disease in the past year, tobacco and alcohol use, knowing someone 

with AIDS, willingness to care for a family member with AIDS, and having had a previous HIV 

test.[3] In some cases, we used only one of two variables when they were highly collinear (e.g., 

when there was nearly complete overlap between ethnicity and language). In a small departure 

from the Zambian 2007 analysis, we defined the “married” variable with three categories (i.e., 

never married, currently married, and formerly married), as widowed individuals may be at high 

risk for HIV infection. For those individuals for whom information was only available from the 

household questionnaire, we controlled for sex, age, education, wealth quintile, urban setting, 

and region. In Senegal 2005, which had low prevalence among men, we used wider age 

categories to ensure that there were HIV positive individuals in each category. Rates of missing 

observations for covariates were low across surveys, typically within the range of 2-4% of 

individuals missing at least one covariate observation on the individual questionnaire. We 

formed a single HIV status variable for surveys that reported HIV-1 and HIV-2 status.  

For the selection models, we operationalized interviewer identity by creating a dummy 

variable for each interviewer. Interviewers who conducted at least 50 interviews were assigned 

their own dummy variable and those who conducted fewer than 50 interviewers were combined 

in an ‘other interviewer’ dummy variable.[3] Estimating the effect that interviewers who conduct 

very few interviews have on participation in testing is difficult and can lead to lack of 

identification or to numerical problems in obtaining estimates. In Malawi 2004 we used 30 

interviews as the minimum threshold when assigning interviewers unique dummy variables, as 

many interviewers in these surveys did not complete at least 50 interviews. We explored using a 

threshold of 30 interviews across surveys but encountered model convergence issues with this 

approach in some settings. 

 

3. Accounting for survey design 
 

We employed household sampling weights to calculate nationally representative estimates of 

HIV prevalence for all three modeling strategies. The use of household weights is more 

appropriate than individual weights, which are adjusted for non-participation, as we correct for 

non-participation in our analysis. We incorporated sampling weights after estimating regression 

models, as the variables used to construct the sampling weights were included as regression 

covariates. Thus, for both imputation-based modeling strategies, regressions were fit without 

sampling weights, HIV status was predicted for those without a valid HIV test, and then a 

sampling-weighted average was calculated for those predictions. We accounted for survey strata 

and household clustering when estimating the covariance matrix of regression parameters.  
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4. Parametric simulation of 95% confidence intervals 

 
We employed a parametric simulation approach to generate uncertainty intervals around 

imputation-based HIV prevalence estimates, which incorporates uncertainty about imputed HIV 

status and sampling variation.[5, 6] We simulated the sampling distribution of predicted 

prevalence for the two groups of people who were missing a valid HIV test—those who could 

not be contacted and those who refused consent—using the same procedure for conventional 

imputation and selection-model-based imputation strategies. First, we fit the regression model 

and saved the maximum likelihood estimates of the coefficients and their covariance matrix, 

which was adjusted to account for the complex survey design. In the case of the selection model, 

these coefficients included those from the selection and outcome equations and the correlation 

parameter ρ. Next, 10,000 regression parameter sets were drawn from a multivariate normal 

distribution parameterized by the coefficients and covariance matrix obtained in the first step.[5] 

For each set of regression parameter draws, we predicted HIV status and calculated sampling-

weighted mean prevalence for those missing a valid HIV test. Aggregating these prevalence 

estimates across simulation draws approximated the sampling distribution of imputed prevalence 

for those missing a valid HIV test. 

Obtaining 95% confidence intervals for national estimates of HIV prevalence required 

combining the uncertainty around imputed prevalence estimates for nonparticipants as described 

above with the sampling uncertainty around the prevalence estimate for those with observed HIV 

status. To incorporate uncertainty for the latter, we first simulated 10,000 prevalence values from 

a binomial distribution, parameterized with a probability equal to the complete case estimate for 

prevalence and a population size appropriate for the complex survey design. To approximate the 

sampling distribution for national HIV prevalence, the simulated values for HIV prevalence 

among those with a valid HIV test cannot be combined at random with the simulated values for 

imputed prevalence for those missing a valid HIV test because of correlated sampling 

uncertainty around these estimates. To address this, we induced correlation between the sets of 

simulated prevalence values with an empirical distribution copula method.[7] This procedure 

involves rank-ordering two vectors and then re-ordering them so as to induce a pre-specified 

amount of correlation in their values. We first used the copula method to combine the two 

vectors of imputed prevalence values (i.e., estimates for those who could not be contacted and 

those who refused consent). Then, we combined this vector with the simulated values from the 

sampling distribution for the complete-case analysis.  

For the copula method, we used the average of the correlation coefficients calculated 

from comparisons of bootstrapped draws around prevalence estimates from analyses of the Cote 

d’Ivoire, Zambia and Zimbabwe surveys (correlation coefficients were similar across surveys 

and between men and women; see section below for description of bootstrapping procedure). For 

the conventional imputation analyses that relied on a probit regression, the correlation between 

imputed prevalence for those who refused consent and those who could not to be contacted was 

0.66, and the correlation between the combined imputed prevalence for those who did not have a 

valid HIV test and those with a valid HIV test was 0.67. For the selection model analyses, the 

correlation between imputed prevalence for those who refused consent and those who could not 

to be contacted was 0.46, and the correlation between the combined imputed prevalence for those 

who did not have a valid HIV test and those with a valid HIV test was 0.17. 
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5. Participation rates  

The proportion of eligible individuals participating in HIV testing in the 12 DHS surveys 

included in the final analysis ranged from 63 to 96% in men and 70 to 97% in women, with 

higher participation rates among women (Table 1). Non-consent was the more common cause of 

non-participation in HIV testing for women, while men had similar rates of non-participation due 

to non-consent and non-contact. Considering men and women separately, the span in non-

participation outcomes between the most and the least successful interviewers, in terms of either 

non-consent or non-contact, had a median value of 30 or more percentage points in all cases. All 

surveys had at least one interviewer with a non-participation rate below 9%, with the exceptions 

of Zambia 2007 (for which the lowest non-contact rate for men was 13%) and Zimbabwe 2005-6 

(where the lowest non-contact rate for men was 12%). 

 

6. Bootstrapped confidence intervals 
 

The parametric simulation approach to generating 95% confidence intervals for imputation-based 

prevalence estimates makes strong distributional assumptions. The bootstrap is a more robust 

approach but was not feasible to implement for many surveys, for example due to collinearity 

between interviewer identities and the region variable. For comparison to the parametric 

simulation approach, we obtained bootstrapped confidence intervals for HIV prevalence imputed 

with the selection modeling approach in the Cote d’Ivoire 2005, Zambia 2007, and Zimbabwe 

2005-6 surveys. To construct a bootstrap data set, we resampled clusters of households within 

each stratum. Across these three surveys, the bootstrapped 95% confidence intervals for HIV 

prevalence from the selection modeling approach for those refusing consent, for those who could 

not be contacted, and for the total national estimate were less conservative than those obtained 

from the parametric simulation approach, as shown below: 

 

 Cote d’Ivoire 2005  Zambia 2007  Zimbabwe 2005-6 

 Simulation Bootstrap  Simulation Bootstrap  Simulation Bootstrap 

Men         

   No consent 4.1, 40.3 8.6, 24.6  21.9, 82.5 34.6, 66.2  5.3, 42.0 10.7, 30.9 

   No contact 3.4, 68.5 12.3, 43.4  1.4, 69.7 8.2, 46.8  1.4, 55.8 6.2, 35.0 

   National 3.5, 18.4 5.5, 12.3  13.7, 29.7 17.0, 25.0  10.9, 25.3 12.9 20.3 

Women         

   No consent 1.9, 32.7 6.0, 20.7  7.5, 50.1 14.2, 35.7  6.2, 67.7 14.5, 49.7 

   No contact 1.8, 26.4 5.2, 18.0  1.3, 51.4 0.1, 28.9  0.0, 84.0 0.0, 41.6 

   National 5.0, 11.9 6.1, 9.7  13.7, 23.5 15.1, 20.2  17.0, 32.7 18.4, 26.6 

 

 

7. Semi-nonparametric selection model 

 
The parametric selection model used in the main analysis assumes that the error terms in the 

selection model are distributed bivariate normal. If this assumption was violated, it could impact 

the accuracy of the model’s imputation results. There are limited choices among existing 

software packages for implementing models that relax the bivariate normality assumption. For 

our application, we used a semi-nonparametric selection model that approximates the unknown 

densities of the two error terms by Hermite polynomial expansions.[8] This is implemented in 

Stata in the –snp2s- command.[8] This approach is somewhat limited for our purposes as the 



 

 5 

intercepts are not identified and therefore cannot be used for imputation. Thus, we only used it to 

estimate the selection model correlation parameter, ρ, for comparison to the estimate from the 

parametric model used in the main analysis. The semi-nonparametric model is computationally 

intensive to fit, so we only replicated the consent regressions for the sensitivity analysis. For 

each regression, we compared models fit under two possible specifications for the orders of the 

polynomial expansions: 3 for the selection model and 3 for the outcome model vs. 4 for the 

selection model and 4 for the outcome model. The preferred model was selected based on a 

likelihood ratio test,[8] except in a few cases where only one of the two expansion specifications 

converged, in which case the results from the converged model were used. Semi-nonparametric 

estimates of ρ were modestly correlated with those from the parametric model, with a correlation 

of 0.27, and tended to be closer to zero. All semi-nonparametric estimates of ρ were covered the 

95% CI for ρ estimated with the bivariate probit selection model. The estimate for men in 

Zambia 2007 was similar but slightly lower, with ρ=-0.58 as compared to ρ=-0.75 from the 

parametric model. Given the limitations of this particular semi-nonparametric model, further 

development of semi- and nonparametric selection models is needed to establish strong tests of 

the bivariate normality assumption, which is a promising area for future research. 

 

 

8. Simulation experiment of selection model sensitivity 
 

If interviewers differ in their effect on participation in HIV testing, it is worth considering the 

sensitivity of the selection model to more complex interactions between interviewers and eligible 

individuals. For example, interviewer impact on participation could vary with the HIV status of 

respondents, which would violate the assumption of a constant value for ρ. Here we consider the 

case in which more successful interviewers obtain higher consent rates among those with HIV as 

compared to those without HIV. We used simulation to explore how this form of selection bias 

would affect estimates obtained from the selection model in comparison to complete case and 

conventional imputation analyses. 

 

For the simulation, we used a simplified set of parameters informed from the analysis of men 

who refused consent in the Zambian 2007 DHS. We specified that ρ = 0 and generated HIV 

status for 5,000 individuals as: 

 

hi

* = −1.28 + 0.30x1i + εi
 

 

with ε~N(0,1) and hi
 
= 1 if hi

*
 > 0. The variable x1 denoted urban vs. rural regions, with 40% of 

the population located in an urban setting. For the base case, we generated participation status for 

the 5,000 individuals in the data set as follows, with each respondent assigned one of 34 

interviewers who had unique effects on participation: 

 

si

* = 0.7 + 0.24 x1i + φz i + ui
 

 

where u ~ N(0,1), zi is a vector that indicates which interviewer was assigned to respondent i, φ 

is a vector with interviewer-specific participation effects, and si = 1 if si
*
 > 0. For half of the 

interviewers (group A, the successful interviewers), we assigned each interviewer j a unique 

participation effect φ j
 ~ Uniform(0.28,0.68), and for the other half of the interviewers (Group 
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B), we drew φ j
 ~ Uniform(-0.15,0.25). These specifications yielded an average participation rate 

of 86% in successful interviewer group A and 74% in interviewer group B, matching what was 

observed in the Zambian data set. They also yielded a distribution of participation rates across 

interviewers that was comparable to that observed in the Zambian data.  

 

The data for this base case have no selection on unobserved factors and it is useful to compare 

the performance of the three modeling approaches explored in this paper in this context. As 

shown here in density plots of prevalence estimation error, comparing true sample means to 

those estimated with the three different modeling strategies across 1,000 simulated data sets, 

estimates from the Heckman-type selection model are unbiased but less precise than those 

obtained from either the complete case or standard probit imputation model: 

 
The complete case analysis, which ignores the effects of x1, leads to a slight underestimate of 

prevalence, as x1 is associated with higher HIV prevalence and lower participation. For a small 

number of simulated data sets, the selection model estimated the correlation parameter ρ to be 

nearly equal to 1 (in many of these cases, the model failed to converge). 

  

To explore the potential impact of differential interviewer effect by respondent HIV status, we 

regenerated participation status for respondents who had interviewers from the successful 

interviewers (group A) as follows: 

  

si

* = 0.7 + 0.24 x1i + λhiφz i + ui
 

 

Larger positive values for λ yield higher participation rates for HIV positive individuals among 

successful interviewers. This mechanism generates selection bias in the data but the bias is of a 

different form than that which motivates the selection model. To maintain the same overall 

participation rates in interviewer group A across different values for λ, we reduced the absolute 

effect that each interviewer in group A had on participation by adjusting the uniform distribution 

for sampling values of φj. These distributions were parameterized as follows: 
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λ Interviewer effect φj 

1 φj ~ (0.28, 0.68) 

2 φj ~ (0.23, 0.63) 

3 φj ~ (0.21, 0.61) 

4 φj ~ (0.19, 0.59) 

5 φj ~ (0.18, 0.58) 

6 φj ~ (0.17, 0.57) 

 

These parameterizations result in a reduction in the proportion of HIV negative individuals in 

group A who participate as λ increases, maintaining an over all participation rate of 86% in 

group A. By way of example, if λ = 3, the data generated under these conditions leads to biased 

prevalence estimates in all three modeling strategies. The complete case and standard imputation 

analyses provide similar estimates, which are biased upwards. The selection model predictions 

are biased upwards to a greater extent than the complete case or conventional imputation model, 

as the model “corrects” in the wrong direction (i.e., ρ should be positive). The bias arises because 

there is relatively higher prevalence among consenters in the successful interviewer group, which 

leads to the model predicting higher prevalence among those who did not consent. 

 

 
To systematically examine the relationship between λ and the amount of bias in predicted 

prevalence from different modeling strategies, we plotted mean estimates of prevalence across 

1,000 simulations for the different values of λ. In most simulations, a value of λ=6 results in all 

HIV positive individuals participating within group A. The predicted prevalence estimates 

obtained from complete case, conventional probit, and selection model strategies are all biased 

for λ>1:  
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The magnitude of the difference between estimated and true prevalence increased nonlinearly 

with λ and suggests that systematic differences in interviewer consent rates by respondent HIV 

status do have the potential to lead to biased estimates of HIV prevalence with a selection model. 

However, the magnitude of the change in estimated prevalence in even the most extreme 

simulations was smaller than that estimated for adult men in the Zambia 2007 survey in the main 

analysis, suggesting that this violation of the model’s assumptions, if it were to occur, would be 

unlikely to serve as an alternative explanation for our findings. 

 

9. Software 
 

Software commands implementing the bivariate probit model used in this study include:              

-heckprob- in Stata (StataCorp, College Station, TX), PROC QLIM in SAS (SAS Institute Inc., 

Cary, NC), and the sampleSelection (Henningsen and Toomet) and SemiParBIVProbit packages 

in R (Marra and Radice) in R (Foundation for Statistical Computing, Vienna, Austria).  
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