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ABSTRACT
Objective We previously developed a flexible
specification of the UNAIDS Estimation and Projection
Package (EPP) that relied on splines to generate time-
varying values for the force of infection parameter. Here,
we test the feasibility of this approach for concentrated
HIV/AIDS epidemics with very sparse data and compare
two methods for making short-term future projections
with the spline-based model.
Methods Penalised B-splines are used to model the
average infection risk over time within the EPP 2011
modelling framework, which includes antiretroviral
treatment effects and CD4 cell count progression, and
is fit to sentinel surveillance prevalence data with a
Bayesian algorithm. We compare two approaches for
future projections: (1) an informative prior related to
equilibrium prevalence and (2) a random walk
formulation.
Results The spline-based model produced plausible
fits across a range of epidemics, which included 87
subpopulations from 14 countries with concentrated
epidemics and 75 subpopulations from 33 countries with
generalised epidemics. The equilibrium prior and random
walk approaches to future projections yielded similar
prevalence estimates, and both performed well in tests
of out-of-sample predictive validity for prevalence. In
contrast, in some cases the two approaches varied
substantially in estimates of incidence, with the random
walk formulation avoiding extreme changes in incidence.
Conclusions A spline-based approach to allowing the
force of infection parameter to vary over time within EPP
2011 is robust across a diverse array of epidemics,
including concentrated ones with limited surveillance
data. Future work on the EPP model should consider the
impact that different modelling approaches have on
estimates of HIV incidence.

INTRODUCTION
UNAIDS, working with country analysts, cur-
rently uses the Estimation and Projection Package
(EPP) to estimate and predict trends in HIV inci-
dence, prevalence and mortality.1 2 EPP incorpo-
rates a simple transmission model to generate a
range of different epidemic curves, fitted to senti-
nel surveillance and national population-based
survey data on HIV prevalence.3 Previous versions
of the EPP transmission model produced highly
plausible fits for a diverse array of epidemics but
have had difficulty reproducing patterns in coun-
tries such as Uganda where HIV prevalence
appears to be increasing after a long period of
declining prevalence. To address this, a more flex-
ible model that allows the force of infection

parameter (r) to change over time has been imple-
mented in the most recent version of EPP (EPP
2011),1 4 drawing on past proposals.5 6 This
increased flexibility can improve model fits, but
could be problematic in settings with limited data
and may require additional constraints to obtain
plausible curves. Examination of the model has so
far focused primarily on generalised epidemics,
whereas its performance in settings with sparse
data, such as concentrated epidemics, has not yet
been established.
In this paper, we extend our previous work6 on

a spline-based approach to modelling trends for r,
implementing it within the framework of the EPP
2011 model, and applying the model to concen-
trated epidemics with limited surveillance data. We
also compare two alternatives for projecting HIV
epidemics beyond the last year with surveillance
data using the spline-based model, with the aim of
improving understanding of how different model-
ling approaches for extrapolating beyond the
period of observation can produce divergent short-
term predictions of prevalence and incidence
derived from epidemic models such as EPP 2011.

METHODS
Data
We fit models to sentinel surveillance time series
data on prevalence, as is typically done by
UNAIDS when estimating epidemic trajectories.7 8

In generalised epidemics such as those in sub-
Saharan Africa, these data come from antenatal
clinics, typically stratified on urban versus rural
populations. In settings with concentrated epi-
demics, data are specific to subpopulations, such as
intravenous drug users, commercial sex workers,
and men-who-have-sex-with-men. We tested the
model with data from 75 subpopulations from 33
countries with generalised epidemics and 87 sub-
populations from 14 countries with concentrated
epidemics. Antiretroviral therapy coverage was
included, defined either in terms of absolute
numbers on treatment or a percentage of those in
need. We note that these surveillance data, which
were obtained from UNAIDS, are intended in this
study to enable illustrative model projections, but
these results will not necessarily be directly com-
parable to official estimates regularly published by
countries and UNAIDS due to their final decisions
about data inclusion criteria.

Epidemiological model
As described elsewhere in this supplement, EPP
2011 contains a flexible modelling option that
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allows the force of infection parameter r to change over time,
which is currently achieved with a random walk formulation
that draws new values for r annually.1 4 We used the same
general modelling framework here but employed splines to gen-
erate smooth curves for r.6 9 More specifically, we used a
Bayesian analogue to B-splines in which we penalised changes
in the slope of r with a second degree difference penalty, formu-
lated as prior distributions around changes in adjacent spline
coefficients (βi), expressed as: βi=βi−1+(βi−1−βi−2)+ui 6 10 By
letting ui ∼ normal(0,τ2), the amount of smoothness
is determined by the variance parameter τ2, which must
also be estimated, and we assumed τ2∼ inverse-gamma (0.001,
0.001).6 10 As in our previous proposal, the spline was com-
prised of seven evenly spaced basis functions, which resulted in
nine unknown parameters to estimate, namely seven spline
coefficients, τ2, and the initial pulse of infection to seed the
epidemic.6 Models were fit via incremental mixture importance
sampling (IMIS).11 Results were not calibrated to national
population-based surveys to facilitate visual inspection of
model fits to prevalence trends implied by sentinel surveillance
data. However, calibration to national population-based surveys
can be conducted in the same manner as it currently is for the
models implemented in EPP, without loss of generality of the
present conclusions.7

Future projections
Short-term projections beyond the last year with surveillance
data are important outputs from EPP. To facilitate these projec-
tions, the spline-based model presented previously,6 as well as
the current flexible model implemented in EPP,4 incorporate a
prior distribution for values of r beyond the last year of data
that directs the model towards an equilibrium value for preva-
lence, referred to here as the ‘equilibrium prior ’. This prior is
derived from the mathematical theory of infectious disease
dynamics.12 Briefly, if I is the proportion of the population
infected with HIV and S is the proportion uninfected, with
infection rate r and death rate μ, the change in the infected
population is given by dI/dt=rIS−μI. At later stages in an
epidemic, we expect prevalence to approach equilibrium,
all else being equal. Under this formulation, dI/dt=0 when
r=μ/S, which we approximate as r≈1/(1−prevalence)×1/mean
survivorship. The equilibrium prior uses this value for r as the
mean of a normally distributed prior distribution for r when
making future projections.6

In a limited number of cases, the spline-based model that
employs this prior yields rapidly changing patterns of incidence
when predicting epidemic behaviour beyond the data. To better
understand the impact that assumptions about future behav-
iour of r has on epidemic projections, we explored an alterna-
tive approach to making future predictions within the
spline-based modelling framework that used a random walk
formulation, which imposes very little prior information on
future trajectories for the epidemic.4 5 We implemented this
approach by first fitting the spline-based model, including the
informative equilibrium prior for r, to the full projection period
(eg, to 2015). We then truncate this set of posterior projections
at the last year of data, and then for each posterior draw,
re-project beyond the last year of data by modelling changes in
r with a random walk. For the random walk, we modelled
future changes in log(r) at 1/10 year time increments (instead
of 1 year increments as in5) by drawing from normal dis-
tributions to determine new values for r at each time step (ie,
log(rt+1)∼N(log(rt), σ2)), using an empirical variance term (σ2)
calculated as the mean of the squared differences in adjacent

values for r during the in-sample projection period. We allowed
the variance of the random walk to increase proportionally
with time since the last year with observed data, modelled as
σ2t=σ2t1(t−tl) where t1 is the last year with observed data, so
that variability increases with the duration of the prediction.

We assessed the performance of the equilibrium prior and the
random walk approaches to future projections by fitting
the model to a subset of the data truncated at 5 years before
the last year with surveillance data, and computing model pre-
dictions for the 5 truncated years. Based on these out-of-sample
predictions, we calculated the coverage and width of clinic-
specific prediction intervals, and the mean absolute error
(MAE) of observed clinic prevalence versus the posterior
median of predicted prevalence.4 These prediction intervals
were simulated from a random effects probit model for preva-
lence using rejection sampling.13 Coverage of the prediction
intervals for an epidemic was calculated as the proportion of all
clinic-level prevalence data that fell within the 95% prediction
intervals. Thus, ideally a model would have 95% coverage, with
narrow prediction intervals and a low MAE. We only conducted
these tests for generalised epidemics, as concentrated epidemics
typically lacked enough data to allow for model fitting after
data truncation. Equatorial Guinea, Liberia and Sierra Leone
were also excluded due to lack of data.

RESULTS
In-sample projections
Within the EPP 2011 modelling framework, we fit the original
spline-based model that uses an equilibrium prior for future
projections6 and the alternative spline-based model that
employs a random walk for r when making future predictions
to antenatal clinic time series for prevalence for the following
countries with generalised epidemics: Angola, Benin, Botswana,
Burkina Faso, Burundi, Cameroun, Central African Republic,
Chad, Congo, Cote d’Ivoire, Democratic Republic of Congo,
Eritrea, Ethiopia, Gabon, Gambia, Ghana, Equatorial Guinea,
Kenya, Lesotho, Liberia, Malawi, Mali, Namibia, Nigeria,
Rwanda, Sierra Leone, South Africa, Swaziland, Tanzania,
Togo, Uganda, Zambia and Zimbabwe. We modelled separate
epidemics for urban and rural regions in these countries, with
the exception of South Africa, which was divided into nine
geographic regions, and Swaziland, which was divided into
four geographic regions. The spline-based model produced
plausible prevalence projections across these generalised epi-
demics (online appendix figure A).

We also fit the spline-based model to specific risk groups in
concentrated epidemics from the following countries:
Argentina, Armenia, Brazil, Iran, Jamaica, Kazakhstan, Mexico,
Moldova, Myanmar, Nepal, Nicaragua, Pakistan, Ukraine and
Uruguay, for a total of 87 subepidemics. Despite very sparse
surveillance data in many of these settings, the spline-based
model generated plausible projections across this diverse set of
epidemics, with the exception of the general population of
Pakistan, which has extremely low prevalence (online appendix
figure B). Illustrative examples of projections for prevalence are
presented in figure 1 for Argentina.

Future projections
In formal out-of-sample prediction tests for generalised epi-
demics, which involved simulating the posterior predicted distri-
bution of site-level prevalence data, the equilibrium prior
(coverage=83%, prediction interval width=0.090, MAE=0.020)
and random walk (coverage=82%, prediction interval width=
0.086, MAE=0.021) approaches had similar performance. These
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Figure 1 Prevalence and incidence
projections for specific risk groups in
Argentina, as generated from
spline-based force of infection models.
‘Equilibrium prior’ projections use an
informative prior for r to make
out-of-sample projections, whereas
‘Random walk’ projections impose
minimal structure on future values
for r. The data used in this analysis are
meant to allow for illustrative model
projections, and therefore our results
should not be interpreted as being
directly comparable to official
estimates regularly published by
countries and UNAIDS.
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same statistics as calculated for the urban epidemics of
Botswana, Ethiopia, Gabon, Ghana, Kenya, Namibia, Rwanda,
Tanzania, Uganda and Zambia (equilibrium prior: cover-
age=83%, prediction interval width=0.07, MAE=0.019 and
random walk: equilibrium prior: coverage=82%, prediction
interval width=0.07, MAE=0.019) compare favourably to those
for current EPP models as described elsewhere in this supple-
ment.4 Despite the similarities in summary statistics, the two
approaches did differ at the country level, for example with dif-
ferent levels of coverage in several countries such as Lesotho,
Mali and Zimbabwe (figure 2).

The equilibrium prior and random walk approaches to
making future projections yielded similar estimates for preva-
lence but were more variable in terms of their predictions for
incidence. In particular, the equilibrium prior could predict
rapid changes in incidence in some settings, unlike the random
walk approach (figure 3). At the end of the 5-year period used
for out-of-sample projection tests for generalised epidemics,
the ratios of projected prevalence from the random walk as
compared to the equilibrium prior ranged from 0.81 to 1.21,
whereas the ratios of projected incidence ranged from 0.12 to
2.23 (figure 4). Overall, neither approach projected higher
values of prevalence and incidence as compared to the other
(median ratios of prevalence and incidence both=1).

Computational performance
We measured computational efficiency of the spline-based EPP
model by counting the number of likelihood calculations that
were required to obtain convergence of the IMIS algorithm, as
likelihood calculation is the rate-limiting step in the fitting pro-
cedure. We focused on the 75 generalised subepidemics, as con-
centrated epidemics typically require less computing time due
to their sparse data. The median number of likelihoods was
approximately 33 000, although a few epidemics required over

100 000 likelihoods to be calculated, namely urban regions of
Kenya, Namibia, Nigeria and Uganda.

The length of the projection period beyond the last year of
observed data could affect in-sample fit as, for example, the
spacing of the basis splines within the function used to gener-
ate curves for r is dependent on the length of projection period.
We explored this possibility by re-estimating models for all 75
generalised epidemics using a projection period of 1975 to 2012
instead of 1975 to 2015. The mean absolute difference in esti-
mated prevalence for the last year with data in each epidemic
was 0.001 when comparing prevalence estimated from models
fit to 2012 versus 2015, suggesting that this is not an import-
ant issue in practice.

DISCUSSION
A spline-based force of infection model implemented within
the EPP 2011 framework generated robust in-sample prevalence
and incidence projections across 162 epidemics. Of particular
note, approximately half of these were concentrated epidemics,
which have sparse data and have been difficult to fit with other
flexible modelling specifications. Two approaches to making
future projections beyond the last year with surveillance data
were more likely to differ in their projections of incidence than
their projections of prevalence, and both of these approaches
performed well in formal out-of-sample prediction tests for
prevalence. From a computational standpoint, these spline-
based models should perform at least as efficiently as the
current flexible model implemented in EPP 2011, as they have
fewer parameters to estimate. This is an important consider-
ation for end-users of the software who desire reasonable com-
puting times when making projections.

An important observation from this study is that future
projections of incidence, which are increasingly being used in
reports on the global HIV/AIDS epidemic,2 are likely to have
greater model uncertainty than future projections of preva-
lence. Uncertainty intervals around estimates and projections
typically reflect parameter estimation uncertainty but not
uncertainty about aspects of model structure and process,
and the approach to extrapolating beyond the last observed
data point is an example of the latter. The two approaches
we compared for making short-term projections may be
regarded as two extreme cases in terms of the amount of
prior information that is incorporated into future projections.
The approach using equilibrium prior makes strong assump-
tions about future patterns for r (and therefore incidence),
whereas the random walk implies that we have virtually zero
information about future epidemic behaviour. The rapid
changes in incidence seen in a subset of countries when
using the equilibrium prior occurs when the value for r at
the end of the in-sample projection period differs substan-
tially from the value for r implied by the equilibrium prior.
Given the increasing importance of obtaining incidence
projections from EPP, the random walk approach to future
projections may in some cases provide more plausible predic-
tions than the use of a strong equilibrium prior. On the
other hand, if the random walk underestimates the degree to
which future trends relate to recent past trends or incidence
is not stabilising, the best prediction may fall between those
yielded by the two alternative approaches. On average,
neither approach consistently predicted higher values for inci-
dence or prevalence than the other.

Using a spline-based model for in-sample fit, combined with a
random walk for out-of-sample projections, can be viewed as a
hybrid implementation of previous proposals.5 6 The use of the

Figure 2 Average coverage of site-level 95% prediction intervals for
final year of out-of-sample projections in 69 generalised epidemics,
comparing two approaches to making future projections from a
spline-based force of infection model: (1) an informative prior related to
equilibrium prevalence and (2) a random walk formulation. When the
two methods have different coverage for a given subepidemic, they are
connected with a vertical line.
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spline for in-sample fit, as opposed to a random walk as imple-
mented in EPP 2011,4 has the advantages of requiring fewer
parameters to estimate, generating well-behaved curves for r,
and producing smooth ‘best fit’ curves for r, incidence and preva-
lence. The use of the random walk for out-of-sample

projections, as opposed to equilibrium prior or a spline with no
prior, offers a more conservative approach to projecting short-
term future incidence. In combining strengths of the spline-
based and random walk models, the ‘hybrid’ approach appears
to perform better than either EPP classic or flexible model imple-
mented in EPP 2011 in formal out-of-sample projection tests.4

The models considered here are not without limitations.
Modelling the force of infection parameter with splines only can
lead to unstable projections at the data boundary, requiring either
a prior for r beyond the data, or the use of something like a
random walk for making future projections. We also had trouble
fitting the epidemic curve for the general population of Pakistan,
although it is unclear if a simple susceptible-infected transmission
model is appropriate for subpopulations with prevalence below 1
in 1000, as infection may be entering from contact with other
subpopulations with concentrated epidemics.

In conclusion, an approach that uses splines to generate
in-sample curves for r and a random walk formulation for
future projections beyond the last year with surveillance data
may be a promising model for consideration within future ver-
sions of EPP. However, it should be recognised that while devel-
opment of the EPP model has focused on improving model
projections for HIV prevalence, HIV incidence is increasingly
being used as a key indicator of epidemic behaviour and
for assessing the successfulness of national responses to
HIV/AIDS.2 8 Future work on the EPP model should therefore
consider the impact that modelling assumptions have on pro-
jections of HIV incidence, and methods for validating these
incidence projections and understanding the uncertainty
that surrounds them could be important inputs to the future
refinement of EPP.

Figure 3 Prevalence, incidence and force of infection parameter (r) projections for two generalised epidemics in sub-Saharan Africa, as generated
from spline-based force of infection models. ‘Equilibrium prior’ projections use an informative prior for r to make out-of-sample projections, whereas
‘Random walk’ projections impose minimal structure on future values for r. The data used in this analysis are meant to allow for illustrative model
projections, and therefore our results should not be interpreted as being directly comparable to official estimates regularly published by countries
and UNAIDS.

Figure 4 Ratios of projected incidence and prevalence for final year of
out-of-sample projections in 69 generalised epidemics, comparing the
random walk (numerator of ratio) to equilibrium prior (denominator of
ratio) approaches to making future projections with a spline-based force
of infection model.
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Key messages

▸ Splines can generate well-behaved, flexible curves that can
be used to allow model parameters to change value over
time.

▸ Modelling the force of infection parameter with splines may
help improve the efficiency and accuracy of EPP projections.

▸ Future work on the EPP model should consider the impact
that different modelling approaches have on estimates of HIV
incidence.
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