Appendix

The structure of the model is represented by the following set of differential equations.

\[
\begin{align*}
\frac{dX_{k_1}^{00}}{dt} & = \Lambda_{k_1}(t) \sigma_{k_1}X_{k_1}^{01}(t) (\mu + \lambda_{k_1}(t) + \rho_{k_1}(t)) X_{k_1}^{00}(t) + \gamma_{k_1}^{01}(T2) + R_{k_1}^{00}(t), \\
\frac{dX_{k_1}^{10}}{dt} & = \lambda_{k_1}(t)X_{k_1}^{00}(t) \sigma_{k_1}X_{k_1}^{11}(t) (\mu + 1 + \rho_{k_1}(t)) X_{k_1}^{10}(t) + C_{k_1}^{11}(T2) + R_{k_1}^{10}(t)(0.2), \\
\frac{dX_{k_1}^{20}}{dt} & = \gamma_{k_1}X_{k_1}^{10}(t) \sigma_{k_1}X_{k_1}^{21}(t) (\mu + \gamma_{k_1}(t)) X_{k_1}^{20}(t) + C_{k_1}^{21}(T2), \\
\frac{dX_{k_1}^{30}}{dt} & = \gamma_{2}X_{k_1}^{20}(t) \sigma_{k_1}X_{k_1}^{31}(t) (\mu + \rho_{k_1}(t)) X_{k_1}^{30}(t) + C_{k_1}^{31}(T2), \\
\frac{dX_{k_1}^{01}}{dt} & = \rho_{k_1}(t)X_{k_1}^{00}(t) (\mu + \sigma_{k_1}) X_{k_1}^{01}(t) + C_{k_1}^{01}(T), \\
\frac{dX_{k_1}^{11}}{dt} & = \lambda_{2}X_{k_1}^{01}(t) \rho_{k_1}(t)X_{k_1}^{10}(t) (\mu + \sigma_{k_1}) X_{k_1}^{11}(t) + C_{k_1}^{11}(T), \\
\frac{dX_{k_1}^{21}}{dt} & = \gamma_{1}X_{k_1}^{11}(t) \rho_{k_1}(t)X_{k_1}^{20}(t) (\mu + \sigma_{k_1}) X_{k_1}^{21}(t) + C_{k_1}^{21}(T), \\
\frac{dX_{k_1}^{31}}{dt} & = \gamma_{2}X_{k_1}^{21}(t) \rho_{k_1}(t)X_{k_1}^{30}(t) (\mu + \sigma_{k_1}) X_{k_1}^{31}(t) + C_{k_1}^{31}(T), \\
\frac{dX_{k_1}^{40}}{dt} & = \gamma_{1}X_{k_1}^{30}(t) \sigma_{k_1}X_{k_1}^{41}(t) (\mu + \lambda_{k_1}(t)) X_{k_1}^{40}(t) + C_{k_1}^{40}(T), \\
\frac{dX_{k_1}^{41}}{dt} & = \gamma_{3}X_{k_1}^{31}(t) (\mu + \sigma_{k_1}) X_{k_1}^{41}(t) + C_{k_1}^{41}(T).
\end{align*}
\]

Screening and treatment of GC:

With: \(C_{k_1}^{11}(T2) \) \(C_{k_1} \% \cdot F_{k_1} \cdot X_{k_1}^{11}(t) \cdot \| t \| \theta_1 \), \(\forall h, k \).

\[
\text{for } \theta: \begin{array}{c|c}
 t & \text{if } t \neq T2 \\
\end{array}
\]

Condom use per partnership:

\[
\beta_{\text{new}_{k,i,j}}(t) = (\text{Cond}_{k} \cdot (T2) \% \cdot \{ t \theta_2 \}) \quad 1 + (\text{Cond}_{k,i,j}(T1) \% \cdot \{ t \theta_1 \}) \beta_{k,i,j}, \\
\xi_{\text{new}_{k,i,j}}(T2) = (\text{Cond}_{k,i,j}(T2) \% \cdot \{ t \theta_2 \}) \quad (\text{Cond}_{k,i,j}(T1) \% \cdot \{ t \theta_1 \}) \xi_{k,i,j},
\]

\(\forall h, k \)
with \(\text{Cond}_{k,i,j}(t) \) \(\forall k, i, j \)

\[
\begin{align*}
\text{or } \theta_1 & \quad \begin{cases}
 t & \text{if } t \neq T_1 \\
 T_1 & \text{if } t \geq T_1
\end{cases} \\
\text{or } \theta_2 & \quad \begin{cases}
 t & \text{if } t \neq T_2 \\
 T_2 & \text{if } t \geq T_2
\end{cases}
\end{align*}
\]

Here \(X_{ki}^{hs}(t) \) represents the number of individuals of sex \(k \) (1: female; 2: male) and activity class \(i \) (1: low rate of partner change; 2: higher rates of partner change) in disease states \(h \) (HIV status) and \(s \) (STD status) at time \(t \). An individual is in state \(h = 0 \) if susceptible to HIV in state \(h = 1 \) if in phase 1 of HIV infection, in state \(h = 2 \), or \(h = 3 \) if in phase 2 and 3 of HIV infection respectively. An individual in state \(h = 4 \) is diagnosed with full blown AIDS. An individual is susceptible to the STD if \(s = 0 \) and currently infected with the STD if \(s = 1 \). \(C_{ki} \) represents the fraction of individuals in risk group \(k, i \) screened/diagnosed and treated at time \(T_2 \) (coverage) \(F_{ki} \) is the frequency of screening in activity class \(i \) of sex \(k \) per year. \(\text{Cond}_{k,i,j}(T_1) \) and \(\text{Cond}_{k,i,j}(T_2) \) are the fraction of individuals \(k, i \) who start using condoms in partnership with someone of opposite sex \(k' \) and activity class \(j \) at time \(T_1 \) and \(T_2 \).

An individual susceptible to both infections \((X_{ki}^{00}(t)) \) can get infected either by the STD or HIV at a rate \(\rho_{ki}(t) \) (eqn 0.7) and \(\lambda_{1ki}(t) \) (eqn 0.8) respectively. It is assumed that HIV positives and negatives are equally likely to acquire an STD infection. However, HIV negative individuals \((X_{ki}^{01}(t) \text{ or } X_{ki}^{00}(t)) \) are more likely to get HIV from HIV-STD partners. HIV positive individuals \((X_{ki}^{01}(t)) \) are more susceptible to infection with HIV \((\lambda_{2ki}(t)) \) (eqn 0.9). At time \(t = 0 \): e. 1980, \(\sum_{i=1}^{2} X_{ki}^{00}(0) = 122605 \)

20 ems
and $\sum_{i=1}^{2} X_{20}^{10} = 115558$ and the HIV epidemic is seeded with $X_{11}^{10}(0) = 1, X_{12}^{10}(0) = 1$ while the STD is already at its initial equilibrium prevalence before the introduction of HIV. The other state variables are equal to 0. Once infected, an STD positive of sex k and activity class i remains infected and infectious for a period of time of $1/\sigma_{ki}$ respectively after which period, the individual joins the susceptible class again. Whether STD positive or negative, HIV seroconverters remain symptomless for an average period of time $(1/\gamma 1 + 1/\gamma 2 + 1/\gamma 3)$ before progressing to the AIDS stage. Individuals in the population die at a natural rate μ ($\mu = $average sexual life expectancy). The AIDS related mortality, α is equal to $1/$life expectancy of patient with full blown AIDS.

The per capita rate of STD infection is defined as follows:

$$\rho_{ki}(t) = m_{ki}(t) \sum_{i} \xi_{new_{ki}} \varphi_{ki}(t) \sum_{h=0}^{3} \frac{X_{k,j}^{h1}(t)}{\sum_{s} X_{k,j}^{s}(t)}$$

(0.11)

The per capita rates of HIV infection for those without (STD) and with (STD) current infection with the cofactor STD are defined as follows:

$$\lambda_{1_{ki}}(t) = m_{ki}(t) \sum \varphi_{ki}(t) \frac{\sum_{h=1}^{3} \beta new_{ki}^{h}(X_{k,j}(t)^{h0} + RR_{HIV/STD} \cdot X_{k,j}(t)^{h1}(t))}{\sum_{s} X_{k,j}^{s}(t) \sum_{h} X_{k,j}^{h}(t)}$$

(0.12)

As seen in equations (0.7-0.8), the rates of infection depend on the annual rate of partner acquisition ($m_{ki}(t)$) at time of an individual of sex k and activity level i; the probability of choosing an infected partner, which is a function of the mixing pattern $\varphi_{ki}(t)$.
(the probability that a member of class i and sex k has selected a partner of sex k' and class j at time t); the probability that this partner is infected (prevalence of infection in risk group k,i); and the per partner transmission probability of the STD ($\xi_{new_{k'j}}$) or HIV ($\beta_{new_{j}}$) from a partner of sex k', activity class j to a susceptible of sex k and activity class.

AIDS patients are assumed not to contribute to transmission because of the severity of their illness. The term $RR_{HIV/STD}$ in (0.13) and in the right hand side of (0.12) represents the relative increase in HIV susceptibility of HIV STD and in infectivity of STD+ /HIV+ respectively.

New recruits join the susceptible sexually active population at a rate $\Lambda_{ki}(t)$. The expression for the new recruits to the sexually active population is:

$$
\Lambda_{ki}(t) = Q_{ki}RPf \left[X_{t1}^{01}(t, \tau) + X_{t1}^{11}(t, \tau) \right]
+ X_{t1}^{11}(t, \tau) + X_{t1}^{21}(t, \tau) + X_{t1}^{21}(t, \tau) \right]
$$

(0.14)

Here Q_{ki} is the initial distribution in sexual activity for each sex in the absence of AIDS induced mortality. R denotes the sex ratio (assumed to be 1:1 at birth which gives $R = 0.5$). f denotes the per capita birth rate of sexually active women $f = 0.3$. P is the proportion of uninfected infants who survive to join the sexually active age classes[49] ($P = \exp^{-br}$ where τ is the age at sexual maturity (15 years) and b is the death rate over the interval $[0, \tau]$). The net rate of prostitute renewal is given by:

$$
R_{ki}^{00} = \gamma_{3} \cdot X_{ki}^{30}(t)/2, \text{ for } k \neq 1, i \neq 2
$$

(0.15)

$$
R_{ki}^{00} = 0, \text{ otherwise}
$$

(0.16)
We define the elements of the mixing matrix as [49]

\[
\varphi_{kij} = \frac{W_{kij} \left(N_{k_i}(t) N_{l_j}^4(t) \right) m_{k_i}(t) - N_k^4(0)}{\sum_k W_k \left(N_k N_k^4(0) \right)^{1/4}} \quad \text{or} \quad k\neq i
\]

(0.19)

The \(W_k \) define a set of weights which represent the preference of someone of sex \(k \) in activity class \(i \) for someone of the opposite sex in activity class \(j \). The elements of the mixing matrix \(\varphi_{kij}(t) \) must satisfy the following constraint at time \(t \) [49]:

\[
D \varphi_{kij}(t) = \varphi_{kij}(t)
\]

(0.20)

\[
\sum k \varphi_{kij}(t) = N_{k_i}(t) N_{k_j}^4(t) m_{k_i}(t) - N_k^4(t) m_{k_j}(0) - N_k^4(t) m_{k_i}(0)
\]

(0.22)

As described in ref [49] we adopt a procedure which means rate of partner change in the lowest female activity group remains unchanged (for all \(t \)) to act as a reference point to define a rate of change as mortality influences population structure condition. The elements of the mixing matrix should be equal for males and females (details in ref [49]).

For the high prevalence scenario, we used the weights: $W_{111}(1980) = 2$, $W_{112}(1980) = W_{1980} = 1$, $W_{211}(1980) = 2$, $W_{212}(1980) = 1$ and $W_{221}(1980) = W_{222}(1980)$. To obtain the same Gc equilibrium prevalence in 1980 than for Cotonou, the following Gc recovery rates were used: $\sigma_{11} = 6.5, \sigma_{12} = 8.4, \sigma_{21} = 6.5, \sigma_{22} = 8.4$.

20 0.08