Skip to main content
Log in

In vitro antifungal activities of voriconazole and reference agents as determined by NCCLS methods: Review of the literature

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Voriconazole (Vfend™) is a new triazole that currently is undergoing phase III clinical trials. This review summarizes the published data obtained by NCCLS methods on the in vitro antifungal activity of voriconazole in comparison to itraconazole, amphotericin B, fluconazole, ketoconazole and flucytosine. Voriconazole had fungistatic activity against most yeasts and yeastlike species (minimum inhibitory concentrations [MICs] <2 μg/ml) that was similar or superior to those of fluconazole, amphotericin B, and itraconazole. Against Candida glabrata and C. krusei, voriconazole MIC ranges were 0.03 to 8 and 0.01 to >4 μg/ml, respectively. For four of the six Aspergillus spp. evaluated, voriconazole MICs (< 0.03 to 2 μg/ml) were lower than amphotericin B (0.25 to 4 μg/ml) and similar to itraconazole MICs. Voriconazole fungistatic activity against Fusarium spp. has been variable. Against F. oxysporum and solani, most studies showed MICs ranging from 0.25 to 8 μg/ml. Voriconazole had excellent fungistatic activity against five of the six species of dimorphic fungi evaluated (MIC90s < 1.0 μg/ml). The exception was Sporothrix schenckii (MIC90s and geometric mean MICs ≥ 8 μg/ml). Only amphotericin B had good fungistatic activity against the Zygomycetes species (voriconazole MICs ranged from 2 to >32 μg/ml). Voriconazole showed excellent in vitro activity (MICs < 0.03 to 1.0 μg/ml) against most of the 50 species of dematiaceous fungi tested, but the activity of all the agents was poor against most isolates of Scedosporium prolificans and Phaeoacremonium parasiticum (Phialophora parasitica). Voriconazole had fungicidal activity against most Aspergillus spp., B. dermatitidis, and some dematiaceous fungi. In vitro/in vivo correlations should aid in the interpretation of these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Edwards, JE, Jr. International conference for the development of a consensus on the management and prevention of severe candidal infections. Clin Infect Dis 1997; 25: 43-59.

    PubMed  Google Scholar 

  2. Haijeh RA, Brandt ME, Pinner RW. Emergence of cryptococcal disease: epidemiologic perspectives 100 years after its discovery. Epidemiol Rev 1995; 17: 303-320.

    Google Scholar 

  3. Denning DW, Venkateswarlu K, Oakley KL, Anderson MJ, Manning NJ, Stevens DA, Warnock DW, Kelly SL. Itraconazole resistance in Aspergillus fumigatus. Antimicrob. Agents Chemother. 1997; 41: 1364-1368.

    PubMed  CAS  Google Scholar 

  4. Anaissie E, Kantarjian H, Ro H, Hopfer R, Rolston RK, Fainstein V, Bodey G. The emerging role of Fusarium infections in patients with cancer. Medicine 1988; 67: 77-83.

    PubMed  CAS  Google Scholar 

  5. Berenguer J, Rodriguez-Tudela JL, Richard C, Alvarez M, Sanz MA, L Guztellurutia, the Scedosporium prolificans Spanish Study Group. Deep infections caused by Scedosporium prolificans. A report on 16 cases in Spain and a review of the literature. Medicine 1997; 76: 256-265.

    Article  PubMed  CAS  Google Scholar 

  6. Coleman DC, Sullivan DJ, Bennett DE, Moran GP, Barry HJ, Shanfey DB. Candidiasis: the emergence of a novel species. Candida dubliniensis. AIDS 1997; 11: 557-567.

    Article  PubMed  CAS  Google Scholar 

  7. Verweij PE, van den Bergh MFQ, Rath PM, dePauw BE, Voss A, Meis JFGM. Invasive aspergillosis caused by Aspergillus ustus: case report and review. J Clin Microbiol 1999; 37(5): 1606-1609.

    PubMed  CAS  Google Scholar 

  8. Weiss LM, Thiemke WA. Disseminated Aspergillus ustus infection following cardiac surgery. Am J Clin Pathol 1983; 80: 408-411.

    PubMed  CAS  Google Scholar 

  9. Pfaller MA, Jones RN, Messer SA, Edmond MB, Wenzel RP. National surveillance of nosocomial bloodstream infections due to Candida albicans: frequency of occurrence and antifungal susceptibility and the SCOPE program. Diagn Microbiol Infect Dis 1998; 31: 327-332.

    Article  PubMed  CAS  Google Scholar 

  10. Aller AI, Martin-Mazuelos E, Lozano F, Gomez-Mateos J, Steele-Moore L, Holloway WJ, Gutiérrez MJ, Recio FJ and Espinel-Ingroff A. Correlation of fluconazole MICs with clinical outcome in cryptococcal infection. Antimicrob Agents Chemother 2000; 44: 1544-1548.

    Article  PubMed  CAS  Google Scholar 

  11. Law D, Moore CB, Wardle HM, Ganguli LA, Kenney MGL, Denning DW. High prevalence of antifungal resistance in Candida spp. from patients with AIDS. J Antimicrob Chemother 1994; 34: 659-668.

    PubMed  CAS  Google Scholar 

  12. Powderly WG. Resistant candidiasis. AIDS Res Hum Retroviruses 1994; 10: 925-929.

    Article  PubMed  CAS  Google Scholar 

  13. Walsh TJ, Melcher GP, Rinaldi MG, Lecciones J, McGough D, Lee J, Callender D, Rubin M, Pizzo PA. Disseminated trichosporonosis resistant to amphotericin B. J Clin Microbiol 1990; 28: 1616-1622.

    PubMed  CAS  Google Scholar 

  14. Gallis HA, Drew RH, Pickard WW. Amphotericin B: 30 years of clinical use. Rev Infect Dis 1990; 12: 308-329.

    PubMed  CAS  Google Scholar 

  15. Nguyen MH, Clancy CJ, Yu VL, Yu YC, Morris AJ, Snydman DR, Sutton DA, Rinaldi MG. Do in vitro susceptibility data predict the microbiologic response to amphotericin B? Results of a prospective study of patients with Candida fungemia. J Infect Dis 1998; 177: 425-430.

    Article  PubMed  CAS  Google Scholar 

  16. Wong-Beringer A, Jacobs RA, Guglielmo BJ. Lipid formulations of amphotericin B: clinical efficacies and toxicities. Clin Infect Dis 1998; 27: 603-618.

    PubMed  CAS  Google Scholar 

  17. Purkins L, Ghahramani P, Greenhalgh K, Allen MJ, Kleinermans D. The pharmacokinetics and safety of voriconazole following intravenous to oral dose escalation regimens. Antimicrob Agents Chemother 2000; In press.

  18. National Committee for Clinical Laboratory Standards. Reference method for broth dilution antifungal susceptibility testing of conidium-forming filamentous fungi. Proposed standard M38-P. National Committee for Clinical Laboratory Standards 1998; Wayne, PA.

    Google Scholar 

  19. National Committee for Clinical Laboratory Standards. Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard M27-A. National Committee for Clinical Laboratory Standards 1997; Wayne, PA.

    Google Scholar 

  20. Abraham OC, Manavathu EK, Cutright JL, Chandrasekar PH. In vitro susceptibilities of Aspergillus species to voriconazole, itraconazole, and amphotericin B. Diagn Microbiol Infect Dis 1999; 33: 7-11.

    Article  PubMed  CAS  Google Scholar 

  21. Cuenca-Estrella M, Ruiz-Diez B, Martinez-Suarez V, Monzon A, Rodriguez-Tudela JL. Comparative in vitro activity of voriconazole (UK-109,496) and six other antifungal agents against clinical isolates of Scedosporium prolificans and Scedosporium apiospermum. J Antimicrob Chemother 1999; 43: 149-151.

    Article  PubMed  CAS  Google Scholar 

  22. Cuenca-Estrella, M, Diaz-Guerra TM, Mellado E, Monzon A, Rodriguez-Tudela JL. Comparative in vitro activity of voriconazole and itraconazole against fluconazole-susceptible and fluconazole-resistant clinical isolates of Candida species from Spain. Eur J Clin Microbiol Infect Dis 1999; 18: 432-435.

    Article  PubMed  CAS  Google Scholar 

  23. Manavathu EK, Cutright JL, Chandrasekar PH. Comparative study of susceptibilities of germinated and ungerminated conidia of Aspergillus fumigatus to various antifungal agents. J Clin Microbiol 1999; 37(3): 858-861.

    PubMed  CAS  Google Scholar 

  24. Radford SA, Johnson EM, Warnock DW. In vitro studies of activity of voriconazole (UK-109,496), a new triazole antifungal agent, against emerging and less-common mold pathogens. Antimicrob Agents Chemother 1997; 41(4): 841-843.

    PubMed  CAS  Google Scholar 

  25. Wildfeuer A, Seidl HP, Paule I, Haberreiter A. In vitro evaluation of voriconazole against clinical isolates of yeasts, moulds and dermatophytes in comparison with itraconazole, ketoconazole, amphotericin B and griseofulvin. Mycoses 1998; 41: 309-319.

    Article  PubMed  CAS  Google Scholar 

  26. Arikan S, Lozano-Chiu M, Paetznick V, Nangia S, Rex JH. Microdilution susceptibility testing of amphotericin B, itraconazole, and voriconazole against clinical isolates of Aspergillus and Fusarium species. J Clin Microbiol 1999; 37(12): 3946-3951.

    PubMed  CAS  Google Scholar 

  27. Espinel-Ingroff, A. In vitro activity of the new triazole voriconazole (UK-109,496) against opportunistic filamentous and dimorphic fungi and common and emerging yeast pathogens. J Clin Microb 1998; 36(1): 198-202.

    CAS  Google Scholar 

  28. Hoban DJ, Zhanel GG, Karlowsky JA. In vitro susceptibilities of Candida and Cryptococcus neoformans isolates from blood cultures of neutropenic patients. Antimicrob Agents Chemother 1999; 43(6): 1463-1464.

    PubMed  CAS  Google Scholar 

  29. Johnson EM, Szekely A, Warnock DW. In vitro activity of voriconazole, itraconazole and amphotericin B against filamentous fungi. J Antimicrob Chemother 1998; 42: 741-745.

    Article  PubMed  CAS  Google Scholar 

  30. Meletiadis J, Meis JFG, Horre R, Verweij PE. Short communication: in vitro antifungal activity of six drugs against 13 clinical isolates of Ochroconis gallopava. Studies in Mycology. 1999; 43: 206-208.

    Google Scholar 

  31. Murphy M, Bernard EM, Ishimaru T, Armstrong D. Activity of voriconazole (UK-109,496) against clinical isolates of Aspergillus species and its effectiveness in an experimental model of invasive pulmonary aspergillosis. Antimicrob Agents Chemother 1997; 41(3): 696-698.

    PubMed  CAS  Google Scholar 

  32. Clancy CJ, Nguyen MH. In vitro efficacy and fungicidal activity of voriconazole against Aspergillus and Fusarium species. Eur J Clin Microbiol Infect Dis 1998; 17: 573-575.

    PubMed  CAS  Google Scholar 

  33. Li Ren-Kai, Ciblak MA, Nordoff N, Pasarell L, Warnock DW, McGinnis MR. In vitro activities of voriconazole, itraconazole, and amphotericin B against Blastomyces dermatitidis, Coccidioides immitis, and Histoplasma capsulatum. Antimicrob Agents Chemother 2000; 44(6): 1734-1736.

    Article  PubMed  CAS  Google Scholar 

  34. McGinnis MR, Pasarell L, Sutton DA, Fothergill AW, Cooper CR Jr, Rinaldi MG. In vitro evaluation of voriconazole against some clinically important fungi. Antimicrob Agents Chemother 1997; 41(8): 1832-1834.

    PubMed  CAS  Google Scholar 

  35. McGinnis MR, Pasarell L, Sutton DA, Fothergill AW, Cooper CR Jr, Rinaldi MG. In vitro activity of voriconazole against selected fungi. Med Mycol 1998; 36(4): 239-242.

    Article  Google Scholar 

  36. McGinnis MR, Pasarell, L. In vitro testing of susceptibilities of filamentous Ascomycetes to voriconazole, itraconazole, and amphotericin B, with consideration of phylogenetic implications. J Clin Microbiol 1998; 36(8): 2353-2355.

    PubMed  CAS  Google Scholar 

  37. Sutton AA, Sanche SE, Revankar SG, Fothergill AW, Rinaldi MG. In vitro amphotericin B resistance in clinical isolates of Aspergillus Terreus, with a head-to-head comparison to voriconazole. J Clin Microbiol 1999; 37(7): 2343-2345.

    PubMed  CAS  Google Scholar 

  38. Manavathu EK, Cutright JL, Chandrasekar PH. Organism-dependent fungicidal activities of azoles. Antimicrob Agents Chemother 1998; 42(11): 3018-3021.

    PubMed  CAS  Google Scholar 

  39. Kirkpatrick WR, Revankar AG, McAtee RK, Lopez-Ribot JL, Fothergill AW, McCarthy DI, Sanche SE, Cantu RA, Rinaldi MG, Patterson TF. Detection of Candida Dubliniensis in oropharyngeal samples from human immunodeficiency virus-infected patients in North America by primary chromagar Candida screening and susceptibility testing of isolates. J Clin Microbiol 1998; 36(10): 3007-3012.

    PubMed  CAS  Google Scholar 

  40. Lozano-Chiu M, Arikan S, Paetznick VL, Anaissie EJ, Rex JH. Optimizing voriconazole susceptibility testing of Candida: effects of incubation time, endpoint rule, species of Candida, and level of fluconazole susceptibility. J Clin Microbiol 1999; 37(9): 2755-2759.

    PubMed  CAS  Google Scholar 

  41. Belanger P, Nast CC, Fratti R, Sanati H, Ghannoum M. Voriconazole (UK-109,496) inhibits the growth and alters the morphology of fluconazole-susceptible and-resistant Candida species. Antimicrob Agents Chemother 1997; 41(8): 1840-1842.

    PubMed  CAS  Google Scholar 

  42. Marco F, Pfaller MA, Messer S, Jones RN. In vitro activities of voriconazole (UK-109,496) and four other antifungal agents against 394 clinical isolates of Candida spp. Antimicrob Agents Chemother 1998; 42(1): 161-163.

    PubMed  CAS  Google Scholar 

  43. Pfaller MA, Messer SA, Gee S, Joly S, Pujol C, Sullivan DJ, Coleman DC, Soll DR. In vitro susceptibilities of Candida dubliniensis isolates tested against the new triazole and echinocandin antifungal agents. J Clin Microbiology 1999; 37(3): 870-872.

    CAS  Google Scholar 

  44. Pfaller MA, Zhang J, Messer SA, Brandt ME, Jajjeh RA, Jessup CJ, Tumberland M, Mbidde EK, Ghannoum MA. In vitro activities of voriconazole, fluconazole, and itraconazole against 566 clinical isolates of Cryptococcus neoformans from the United States and Africa. Antimicrob Agents Chemother 1999; 43(1): 169-171.

    PubMed  CAS  Google Scholar 

  45. Pfaller MA, Messer SA, Hollis RJ, Jones RN, Doern JV, Brandt ME, Hajjeh RA. In vitro susceptibilities of Candida bloodstream isolates to the new triazole antifungal agents BMS-207147, Sch 56592, and voriconazole. Antimicrob Agents Chemother 1998; 42(12): 3242-3244.

    PubMed  CAS  Google Scholar 

  46. Barry AL, Brown SD. In vitro studies of two triazole antifungal agents (voriconazole [UK-109,496] and fluconazole) against Candida species. Antimicrob Agents Chemother 1996; 40(8): 1948-1949.

    PubMed  CAS  Google Scholar 

  47. Koul A, Vitullo J, Reyes G, Ghannoum M. Effects of voriconazole on Candida glabrata in vitro. J Antimicrob Chemother 1999; 44: 109-112.

    Article  PubMed  CAS  Google Scholar 

  48. Lopez-Ribot JL, McAtee RK, Perea S, Kirkpatrick WR, Rinaldi MG, Patterson TF. Multiple resistant phenotypes of Candida albicans coexist during episodes of oropharyngeal candidiasis in human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 1999; 43(7): 1621-1630.

    PubMed  CAS  Google Scholar 

  49. Ruhnke M, Schmidt-Westhausen A, Trautmann M. In vitro activities of voriconazole (UK-109,496) against fluconzole-susceptible and-resistant Candida albicans isolates from oral cavities of patients with human immunodeficiency virus infection. Antimicrob Agents Chemother 1997; 41(3): 557-575.

    Google Scholar 

  50. Mondon P, Petter R, Amalfitano G, Luzzati R, Concia E, Polacheck I, Kwon-Chung KJ. Heteroresistance to fluconazole and voriconazole in Cryptococcus neoformans. Antimicrob Agents Chemother 1999; 43(8): 1856-1861.

    PubMed  CAS  Google Scholar 

  51. Nguyen MH, Yu CY. Voriconazole against fluconazolesusceptible and resistant Candida isolates: in vitro efficacy compares with that of itraconazole and ketoconazole. J Antimicrob Chemother 1998; 42: 253-256.

    Article  PubMed  CAS  Google Scholar 

  52. Nguyen MH, Yu CY. In vitro comparative efficacy of voriconazole and itraconazole against fluconazole-susceptible and-resistant Cryptococcus neoformans isolates. Antimicrob Agents Chemother 1998; 42(4): 471-472.

    PubMed  CAS  Google Scholar 

  53. Kauffman CA, Zarins LT. In vitro activity of voriconazole against Candida species. Diagn Microbiol Infect Dis 1998; 31: 297-300.

    Article  PubMed  CAS  Google Scholar 

  54. Van’t Hek, LG, Verweij PE, Weemaes CM, Van Dalen R, Yntema JB, Meis JFGM. Successful treatment with voriconazole of invasive aspergillosis in chronic granulomatous disease. Am J Respir Crit Care Med 1998; 157: 1694-1696.

    Google Scholar 

  55. Espinel-Ingroff A. In vitro fungicidal activities of voriconazole, itraconzole and amphotericin B against opportunistic moniliaceous and dematiaceous fungi. J Clin Microbiol 2001; 39: 954-958.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espinel-Ingroff, A., Boyle, K. & Sheehan, D.J. In vitro antifungal activities of voriconazole and reference agents as determined by NCCLS methods: Review of the literature. Mycopathologia 150, 101–115 (2001). https://doi.org/10.1023/A:1010954803886

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010954803886

Navigation