Skip to main content
Log in

Altered residual ATP content in rat brain cortex subcellular fractions following status epilepticus induced by lithium and pilocarpine

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Changes in residual ATP concentrations were investigated following subcellular fractionation of rat brain cortex after a prolonged period of status epilepticus induced by sequential administration of lithium and pilocarpine. After 2 h of continuous high-amplitude rapid spiking on EEG, we found significantly decreased levels of residual ATP in the homogenate and mitochondria fractions from status epilepticus rat brains compared to matched controls. No difference in residual ATP level was observed in the synaptosomal preparations of status epilepticus animals compared to controls. Inorganic phosphate concentration in the status animals was higher than controls in the cytosolic fraction only. F1-ATPase activity, an enzymatic indicator of mitochondrial ATP synthesis rate, was significantly higher in the status brains, whereas other mitochondrial enzymes were not different in the status and control rat groups. These findings, together with our earlier report of reduced synaptosomal ecto-ATPase activity, suggest that either the corresponding in vivo ATP concentrations were reduced as a result of status epilepticus or other biochemical changes had occurred that facilitated the hydrolysis of ATP following decapitation. Controls for and measurement of such other changes failed to provide an explanation for the observed changes in residual ATP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Albala B. J., Moshe S. L., and Okada R. (1984) Kainicacid induced seizures: a developmental study. Dev. Brain Res. 13, 139–148.

    Article  CAS  Google Scholar 

  • Anderson W. R., Franck J. E., Stahl W. L., and Maki A. A. (1994) Na,K-ATPase is decreased in hippocampus of kainate-lesioned rats. Epilepsy Res. 17, 221–231.

    Article  PubMed  CAS  Google Scholar 

  • Auer R. N., Ingvar M., Nevander G., Olsson Y., and Siesjo B. K. (1986) Early axonal lesion and preserved microvasculature in epilepsy-induced hypermetabolic necrosis of the substantia nigra. Acta Neuropathol. 71, 207–215.

    Article  PubMed  CAS  Google Scholar 

  • Blennow G., Brierley J. B., Meldrum B. S., and Siesjo B. K. (1978) Epileptic Brain damage: the role of systemic factors that modify cerebral energy metabolism. Brain 101, 687–700.

    Article  PubMed  CAS  Google Scholar 

  • Blennow G., Folbergrova J., Nilsson B., and Siesjo B. K. (1979a) Cerebral metabolic and circulatory changes in the rat during sustained seizures induced by Dl-homocysteine. Brain Res. 179, 129–146.

    Article  PubMed  CAS  Google Scholar 

  • Blennow G., Folbergrova J., Nilsson B., and Siesjo B. K. (1979b) Effects of bicuculline-induced seizures on cerebral metabolism and circulation of rats rendered hypoglycemic by starvation. Ann. Neurol. 5, 139–151.

    Article  PubMed  CAS  Google Scholar 

  • Bradford M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Chapman A. G., Meldrum B. S., and Siesjo B. K. (1977) Cerebral metabolic changes during prolonged epileptic seizures in rats. J. Neurochem. 28, 1025–1035.

    Article  PubMed  CAS  Google Scholar 

  • Collins R. C., Posner J. B., and Plum F. (1970) Cerebral energy metabolism during electroshock seizures in mice. Am. J. Physiol. 218, 943–950.

    PubMed  CAS  Google Scholar 

  • Cooperstein S. J. and Lazarov A. (1951) A microspectrophotometric method for the determination of cytochrome oxidase. J. Biol. Chem. 189, 665–670.

    PubMed  CAS  Google Scholar 

  • DeFrance J. F. and McCandless D. W. (1991) Energy metabolism in rat hippocampus during the following seizure activity. Metab. Brain Dis. 6, 83–91.

    Article  PubMed  CAS  Google Scholar 

  • Dowdall M. J., Boyne A. F., and Whittaker V. P. (1974) Adenosine triphosphate: a constituent of cholinergic synaptic vesicles. Biochem. J. 140, 1–12.

    PubMed  CAS  Google Scholar 

  • Duffy T. E., Howse D. C., and Plum F. (1975) Cerebral energy metabolism during experimental status epilepticus. J. Neurochem. 24, 925–934.

    Article  PubMed  CAS  Google Scholar 

  • Dunn D. W. (1988) Status epilepticus in children: etiology, clinical features and outcome. J. Child Neurol. 3, 167–173.

    Article  PubMed  CAS  Google Scholar 

  • Earl D. C. N. and Korner A. (1965) The isolation and properties of cardiac ribosomes and polysomes. Biochem. J. 94, 721–734.

    PubMed  CAS  Google Scholar 

  • Ferrendelli J. A. and McDougal D. B. Jr. (1971a) The effect of electroshock on regional CNS energy reserves in mice. J. Neurochem. 18, 1197–1205.

    Article  PubMed  CAS  Google Scholar 

  • Ferrendelli J. A. and McDougal D. B. Jr. (1971b) The effect of electroshock on regional CNS energy reserves, glycolysis and citric acid cycle flux. J. Neurochem. 18, 1207–1220.

    Article  PubMed  CAS  Google Scholar 

  • Folbergrova J. (1974) Energy metabolism of mouse cerebral cortex during homocysteine convulsions. Brain Res. 81, 443–454.

    Article  PubMed  CAS  Google Scholar 

  • Folbergrova J. (1993) Cerebral energy state of neonatal rats during seizures induced by homocysteine. Physiol. Res. 42, 155–160.

    Google Scholar 

  • Folbergrova J., Ingvar M., and Siesjo B. K. (1981) Metabolic changes in cerebral cortex, hippocampus, and cerebellum during sustained bicuculline-induced seizures. J. Neurochem. 37, 1228–1238.

    Article  PubMed  CAS  Google Scholar 

  • Folbergrova J., Ingvar M., Nevander G., and Siesjo B. K. (1985) Cerebral metabolic changes during and following fluorothyl-induced seizures in ventilated rats. J. Neurochem. 44, 1419–1426.

    Article  PubMed  CAS  Google Scholar 

  • Fujikawa D. G., Vannucci R. C., Dwyer B. E., and Wasterlain C. G. (1988) Generalized seizures deplete brain energy reserves in normoxemic newborn monkeys. Brain Res. 454, 51–59.

    Article  PubMed  CAS  Google Scholar 

  • Henkel R. D., Vandeberg J. L., and Walsh R. A. (1988) A microassay for ATPase. Anal. Biochem. 169, 312–318.

    Article  PubMed  CAS  Google Scholar 

  • Honchar M. P., Olney J. W., and Sherman W. R. (1983) Systemic cholinergic agents induce seizures and brain damage in lithium-treated rats. Science 220, 323–325.

    Article  PubMed  CAS  Google Scholar 

  • Howse D. C. N. (1979) Metabolic responses to status epilepticus in the rat, cat and mouse. Can. J. Physiol. Pharmacol. 57, 205–212.

    PubMed  CAS  Google Scholar 

  • Howse, D. C. N., Caronna J. J., Duffy T. E., and Plum F. (1974) Cerebral energy metabolism, pH, and blood flow during seizures in the cat. Am. J. Physiol. 227, 1444–1451.

    PubMed  CAS  Google Scholar 

  • Ingvar M., Folbergrova J., and Siesjo B. K. (1987) Metabolic alterations underlying the development of hypermetabolic necrosis in the substantia nigra in status epilepticus. J. Cereb. Blood Flow Metab. 7, 103–108.

    PubMed  CAS  Google Scholar 

  • Johnson M. K. (1960) The intracellular distribution of glycolytic and other enzymes in rat brain homogenates and mitochondrial preparations. Biochem. J. 77, 610–618.

    PubMed  CAS  Google Scholar 

  • Jope R. S. and Morrisett R. A. (1986) Neurochemical consequences of status epilepticus induced in rats by coadministration of lithium and pilocarpine. Exp. Neurol. 93, 404–414.

    Article  PubMed  CAS  Google Scholar 

  • Jope R. S., Morrisett R. A., and Snead O. C. (1986) Characterization of lithium potentiation of pilocarpine-induced status epilepticus in rats. Exp. Neurol. 91, 471–480.

    Article  PubMed  CAS  Google Scholar 

  • Jope R. S., Simonato M., and Lally K. (1987) Acetylcholine content in rat brain is elevated by status epilepticus induced by lithium and pilocarpine. J. Neurochem. 49, 944–951.

    Article  PubMed  CAS  Google Scholar 

  • King L. J. and Carl J. (1969) Effects of antiepileptic drugs on brain energy reserves during convulsions. J. Neurochem. 16, 637–643.

    Article  PubMed  CAS  Google Scholar 

  • King L. J., Lowry O. H., Passonneau J. V., and Vinson V. (1967a) Effects of convulsants on energy reserves in the cerebral cortex. J. Neurochem. 14, 599–611.

    Article  PubMed  CAS  Google Scholar 

  • King L. J., Schoepfle G. M., Lowry O. H., Passonneau J. V., and Wilson S. (1967b) Effects of electrical stimulation on metabolites in brain of decapitated mice. J. Neurochem. 14, 613–618.

    Article  PubMed  CAS  Google Scholar 

  • King L. J., Webb O. L., and Carl J. (1970) Effects of duration of convulsions on energy levels of the brain. J. Neurochem. 17, 13–18.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S., Kikuchi H., Ishikawa M., and Hashimoto K. (1990) Regional changes of tissue pH and ATP content in rat brain following systemic administration of kainic acid. Brain Res. 514, 352–354.

    Article  PubMed  CAS  Google Scholar 

  • Maytal J., Shinnar S., Moshe S. L., and Alvarez L. A. (1989) Low morbidity and mortality of status epilepticus in children. Pediatrics 83, 323–331.

    PubMed  CAS  Google Scholar 

  • McCandless D. W., DeFrance J. F., Dworsky S., and Presley-Zimmer E. (1986) Status epilepticus-induced changes in primate cortical energy metabolism. Am. J. Physiol. 251, C774-C779.

    PubMed  CAS  Google Scholar 

  • Meldrum B. (1978) Physiological changes during prolonged seizures and epileptic brain damage. Neuropediatrie 9, 203–212.

    Article  CAS  Google Scholar 

  • Meric P., Barrere B., Peres M., Gillet B., Berenger G., Beloeil J. C., et al. (1994) Effects of kainate-induced seizures on cerebral metabolism: a combined 1H and 31P NMR study in rat. Brain Res. 638, 53–60.

    Article  PubMed  CAS  Google Scholar 

  • Morrisett R. A., Jope R. S., and Snead O. C. (1987) Effects of drugs on the initiation and maintenance of status epilepticus induced by administration of pilocarpine to lithium-pretreated rats. Exp. Neurol. 97, 193–200.

    Article  PubMed  CAS  Google Scholar 

  • Nagy A. and Delgado-Escueta A. V. (1984) Rapid preparation of synaptosomes from mammalian brain using nontoxic isoosmotic gradient material (Percoll). J. Neurochem. 43, 1114–1123.

    Article  PubMed  CAS  Google Scholar 

  • Nagy A. K., Walton N. Y., and Treiman D. M. (1995) Changes in cerebral ATP induced by status epilepticus. J. Neurochem. 64, S108.

    Google Scholar 

  • Nagy A. K., Walton N. Y., and Treiman D. M. (1997) Reduced cortical Ecto-ATPase activity in rat brains during prolonged status epilepticus induced by sequential administration of lithium and pilocarpine. Mol. Chem. Neuropathol. 31, 135–147.

    PubMed  CAS  Google Scholar 

  • Nahorski S. R., Roberts D. J., and Stewart G. G. (1970) Some neurochemical aspects of pentamethyl-enetetrazole convulsive activity in rat brain. J. Neurochem. 17, 621–631.

    Article  PubMed  CAS  Google Scholar 

  • Nevander G., Ingvar M., Auer R., and Siesjo B. K. (1984) Irreversible neuronal damage after short periods of status epilepticus. Acta Physiol. Scand. 120, 155–157.

    PubMed  CAS  Google Scholar 

  • Novelli A., Reilly J. A., Lysko P. G., and Henneberry R. C. (1988) Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res. 451, 205–212.

    Article  PubMed  CAS  Google Scholar 

  • Okada R., Moshe S. L., and Albala B. J. (1984) Infantile status epilepticus and future seizure susceptibility in the rat. Dev. Brain Res. 15, 177–183.

    Article  Google Scholar 

  • Olney J. W., Ho O. L., and Rhee V. (1971) Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system. Exp. Brain Res. 14, 61–76.

    Article  PubMed  CAS  Google Scholar 

  • Persinger M. A., Makarec K., and Bradley J. C. (1988) Characteristics of limbic seizures evoked by peripheral injections of lithium and pilocarpine. Physiol. Behav. 44, 27–37.

    Article  PubMed  CAS  Google Scholar 

  • Petroff O. A. C., Prichard J. W., Behar K. L., Alger J. R. A., and Shulman R. G. (1984) In vivo phosphorus nuclear magnetic resonance spectroscopy in status epilepticus. Ann. Neurol. 16, 169–177.

    Article  PubMed  CAS  Google Scholar 

  • Petroff O. A. C., Prichard J. W., Ogino T., Avison M., Alger J. R. A., and Shulman R. G. (1986) Combined 1H and 31P nuclear magnetic resonance spectroscopic studies of bicuculline-induced seizures in vivo. Ann. Neurol. 20, 185–193.

    Article  PubMed  CAS  Google Scholar 

  • Pullman M. E., Penefsky H. S., Datta A., and Racker E. (1960) Partial resolution of the enzymes catalyzing oxidative phosphorylation. J. Biol. Chem. 235, 3322–3329.

    PubMed  CAS  Google Scholar 

  • Racker E. (1950) Spectrophotometric measurements of the enzymatic formation of fumaric and cisaconitic acids. Biochim. Biophys. Acta 4, 211–214.

    Article  PubMed  CAS  Google Scholar 

  • Retz K. C. and Coyle J. T. (1982) Effects of kainic acid on high-energy metabolites in the mouse striatum J. Neurochem. 38, 196–203.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Prieto J., Sihra T. S., and Nicholls D. G. (1987) Characterization of the exocytotic release of glutamate from guinea-pig cerebral cortical synaptosomes. J. Neurochem. 49, 58–64.

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz R., Zaczek R., and Coyle J. T. (1978) Micro-injection of kainic acid into the rat hippocampus. Eur. J. Pharmacol. 50, 209–220.

    Article  PubMed  CAS  Google Scholar 

  • Siesjo B. K. (1978) Epileptic seizures, in Brain Energy Metabolism (Siesjo B. K., ed.), Wiley, New York, pp. 345–379.

    Google Scholar 

  • Stanley P. E. and Williams S. G. (1969) Use of the liquid scintillation spectrometer for determining adenosine triphosphate by the luciferase enzyme. Anal. Biochem. 29, 381–392.

    Article  PubMed  CAS  Google Scholar 

  • Sutherland G. R., Ross B. D., Lesiuk H., Peeling J., Pillay N., and Pinsky C. (1993) Phosphate energy metabolism during domoic acid-induced seizures. Epilepsia 34, 996–1002.

    Article  PubMed  CAS  Google Scholar 

  • Terland O., Flatmark T., and Kryvi H. (1979) Isolation and characterization of noradrenaline storage granules of bovine adrenal medulla. Biochim. Biophys. Acta 553, 460–468.

    Article  PubMed  CAS  Google Scholar 

  • Vink R., Golding E. M., and Headrick J. P. (1994) Bioenergetic analysis of oxidative metabolism following traumatic brain injury in rats. J. Neurotrauma 11, 265–274.

    Article  PubMed  CAS  Google Scholar 

  • Walton N. Y. and Treiman D. M. (1988) Response of status epilepticus induced by lithium and pilocarpine to treatment with diazepam. Exp. Neurol. 101, 267–275.

    Article  PubMed  CAS  Google Scholar 

  • Walton N. Y., Gunawan S., and Treiman D. M. (1990) Brain amino acid concentration changes during status epilepticus induced by lithium and pilocarpine. Exp. Neurol. 108, 61–70.

    Article  PubMed  CAS  Google Scholar 

  • Wasterlain C. G. and Duffy T. E. (1976) Status epilepticus in immature rats. Arch. Neurol. 33, 821–827.

    PubMed  CAS  Google Scholar 

  • Wasterlain C. G., Fujikawa D. G., Penix L., and Sankar R. (1993) Pathophysiological mechanisms of brain damage from status epilepticus. Epilepsia 34, S37-S53.

    PubMed  Google Scholar 

  • Young R. S. K., Cowan B., and Briggs R. W. (1987) Brain metabolism after electroshock seizure in the neonatal dog: a [31P]NMR study. Brain Res. Bull. 18, 261–263.

    Article  PubMed  CAS  Google Scholar 

  • Young R. S. K., Petroff O. A. C., Chen B., Gore J. C., and Aquila W. J. (1991) Brain energy state and lactate metabolism during status epilepticus in the neonatal dog: in vivo 31P and 1H nuclear magnetic resonance study. Pediatr. Res. 29, 191–195.

    Article  PubMed  CAS  Google Scholar 

  • Younkin D. P., Delivoria-Papadopulos M., Maris J., Donlon E., Clancy R., and Chance B. (1986) Cerebral metabolic effects of neonatal seizures measured with in vivo 31P NMR spectroscopy. Ann. Neurol. 20, 513–519.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walton, N.Y., Nagy, A.K. & Treiman, D.M. Altered residual ATP content in rat brain cortex subcellular fractions following status epilepticus induced by lithium and pilocarpine. J Mol Neurosci 11, 233–242 (1998). https://doi.org/10.1385/JMN:11:3:233

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:11:3:233

Index Entries

Navigation