Skip to main content
Log in

Pharmacokinetics and Potential Interactions Amongst Antiretroviral Agents Used To Treat Patients with HIV Infection

  • Review Articles
  • Drug Interactions
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

There are 3 groups of drugs available for the treatment of patients with HIV disease. These are the nucleoside reverse transcriptase inhibitors (‘nucleoside analogues’) [zidovudine, didanosine, zalcitabine, lamivudine and abacavir]; the non-nucleoside reverse transcriptase inhibitors (nevirapine, delavirdine and efavirenz); and the protease inhibitors (saquinavir, ritonavir, indinavir, nelfinavir and amprenavir).

The preferred initial regimen should reduce and maintain plasma HIV RNA below the level of detection. Presently, the regimen of choice consists of 2 nucleoside analogues plus a protease inhibitor with high in vivo efficacy. An alternative combination consists of 2 nucleoside analogues plus a non-nucleoside reverse transcriptase inhibitor. Drug interactions are one of the major problems associated with these multidrug regimens.

Changes in plasma concentrations of the nucleoside analogues are unlikely to be of clinical relevance as drug effect is mainly dependent on the rate and extent of intracellular phosphorylation. Combinations of zidovudine plus stavudine, and probably zalcitabine plus lamivudine, should be avoided as competition for phosphorylating enzymes may occur. The antiviral efficacy of some nucleoside analogues, e.g. stavudine, may be compromised by prior treatment with other nucleosides (e.g. zidovudine). However, these data need to be clarified in further studies. It is unlikely that administration of other antiretrovirals will influence the activity of nucleoside analogues.

Protease inhibitors are metabolised by hepatic cytochrome P450 (CYP) 3A4. Combination protease inhibitor therapy can result in drug interactions mediated by enzyme inhibition. Ritonavir is the most potent inhibitor, saquinavir the least. The protease inhibitors also interact with the non-nucleoside reverse transcriptase inhibitors. Nevirapine and efavirenz induce drug metabolising enzymes and may reduce plasma concentrations of protease inhibitors. A study in healthy volunteers showed that nelfinavir concentrations are increased by combination with efavirenz. Delavirdine inhibits drug metabolising enzymes and increases the plasma concentration of coadministered protease inhibitors. The nucleoside analogues would not be expected to interact with the protease inhibitors.

Apart from the ability of didanosine to reduce the area under the concentration-time curve of delavirdine, there are no reports of clinically significant interactions of other antiretrovirals with the non-nucleoside reverse transcriptase inhibitors.

Triple therapy is the current standard of care for patients with HIV disease. However, studies of quadruple therapy are already under way. Drug interactions are likely to remain one of the major considerations when selecting a therapeutic regimen for patients with HIV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gottlieb MS, Schroff R, Schanker HM, et al. Pneumocystis carinii pneumonia and mucosal candidiasis in previously healthy homosexual men: evidence of a new acquired cellular immunodeficiency. N Engl J Med 1981; 305: 1425–31.

    Article  PubMed  CAS  Google Scholar 

  2. Wise J. HIV epidemic is far worse than thought. BMJ 1997; 315: 1486.

    PubMed  CAS  Google Scholar 

  3. Feinberg MB. Changing the natural history of HIV disease. Lancet 1996; 348: 239–46.

    Article  PubMed  CAS  Google Scholar 

  4. Hammer SM, Katzenstein DA, Hughes MD, et al. A trial comparing nucleoside monotherapy with combination therapy in HIV-infected adults with CD4 counts from 200–500 per cubic millimeter. N Engl J Med 1996; 335: 1081–90.

    Article  PubMed  CAS  Google Scholar 

  5. Delta Coordinating Committee. Delta: a randomised doubleblind controlled trial comparing combinations of zidovudine plus didanosine or zalcitabine with zidovudine alone in HIV-infected individuals. Lancet 1996; 348: 283–91.

    Article  Google Scholar 

  6. Caesar Coordinating Committee. Randomised trial of addition of lamivudine or lamivudine plus loviride containing regimens for patients with HIV-1 infection: the CAESAR trial. Lancet 1997; 349: 1413–21.

    Article  Google Scholar 

  7. Hammer SM, Squires KE, Hughes MD, et al. A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimetre or less. N Engl J Med 1997; 337: 725–33.

    Article  PubMed  CAS  Google Scholar 

  8. Palella FJ, Delaney KM, Moorman AC, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. N Engl J Med 1998; 338: 853–60.

    Article  PubMed  Google Scholar 

  9. Torres RA, Barr M. Impact of combination therapy for HIV infection on inpatient census. N Engl J Med 1997; 336: 1531–2.

    Article  PubMed  CAS  Google Scholar 

  10. Lipsky JJ. Antiretroviral drugs for AIDS. Lancet 1996; 348: 800–3.

    Article  PubMed  CAS  Google Scholar 

  11. Fischl MA, Richman DD, Grieco MH, et al. The efficacy of azidothymidine (AZT) in the treatment of patients with AIDS and AIDS-related complex. N Engl J Med 1987; 317: 185–91.

    Article  PubMed  CAS  Google Scholar 

  12. St Clair MH, Richards CA, Spector T, et al. 3′-Azido-3′-deoxythymidine triphosphate as an inhibitor and substrate of purified human immunodeficiency virus reverse transcriptase. Antimicrob Agents Chemother 1987; 31: 1972–7.

    Article  Google Scholar 

  13. Smerdon SJ, Jager J, Wang J, et al. Structure of the binding site for non-nucleoside inhibitors of the reverse transcriptase of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 1994; 26: 3911–5.

    Article  Google Scholar 

  14. Deeks SG, Smith M, Holodniy M, et al. HIV-1 protease inhibitors. A review for clinicians. JAMA 1997; 277: 145–53.

    Article  PubMed  CAS  Google Scholar 

  15. Debouck C. The HIV-1 protease as a therapeutic target for AIDS. AIDS Res Human Retroviruses 1992; 8: 153–64.

    Article  CAS  Google Scholar 

  16. Barry M, Gibbons S, Back D, et al. Protease inhibitors in patients with HIV disease: clinically important pharmacokinetic considerations. Clin Pharmacokinet 1997; 32: 194–209.

    Article  PubMed  CAS  Google Scholar 

  17. Carpenter CCJ, Fischl MA, Hammer SM, et al. Antiretroviral therapy for HIV infection in 1996: recommendations of an international panel. JAMA 1996; 276: 146–54.

    Article  PubMed  CAS  Google Scholar 

  18. BHIVA Guidelines Co-ordinating Committee. British HIV Association guidelines for antiretroviral treatment of HIV seropositive individuals. Lancet 1997; 349: 1086–92.

    Article  Google Scholar 

  19. Carpenter CCJ, Fischl MA, Hammer SM, et al. Antiretroviral therapy for HIV infection in 1998. Updated recommendations of the International AIDS Society: USA panel. JAMA 1998; 280: 78–86.

    Article  PubMed  CAS  Google Scholar 

  20. Moyle GJ, Gazzard BG, Cooper DA, et al. Antiretroviral therapy for HIV infection: a knowledge based approach to drug selection and use. Drugs 1998; 55: 383–404.

    Article  PubMed  CAS  Google Scholar 

  21. Fogelman I, Lim L, Bassett R, et al. Prevalence and patterns of use of concomitant medications among participants in three multicentre human immunodeficiency virus type 1 clinical trials. J Acq Immune Def Syndromes 1994; 7: 1057–63.

    CAS  Google Scholar 

  22. Steel K, Gertman PM, Cresienze G, et al. Iatrogenic illness on a general medical service at a university hospital. N Engl J Med 1981; 304: 638–42.

    Article  PubMed  CAS  Google Scholar 

  23. Dudley MN. Clinical pharmacokinetics of nucleoside antiretroviral agents. J Infect Dis 1995; 171 Suppl. 2: S99–112.

    Article  PubMed  Google Scholar 

  24. Bertz RJ, Granneman GR. Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin Pharmacokinet 1997; 32: 210–58.

    Article  PubMed  CAS  Google Scholar 

  25. Foster RH, Faulds D. Abacavir. Drugs 1998; 55: 729–36.

    Article  PubMed  CAS  Google Scholar 

  26. Veal GJ, Back DJ. Metabolism of zidovudine. Gen Pharmacol 1995; 26: 1469–75.

    Article  PubMed  CAS  Google Scholar 

  27. Acosta EP, Page LM, Fletcher CV. Clinical pharmacokinetics of zidovudine: an update. Drug Dispos 1996; 30: 251–62.

    CAS  Google Scholar 

  28. Sim SM, Back DJ, Breckenridge AM. The effect of various drugs on the glucuronidation of zidovudine (azidothymidine; AZT) by human liver microsomes. Br J Clin Pharmacol 1991; 32: 17–21.

    Article  PubMed  CAS  Google Scholar 

  29. Barry M, Howe JL, Ormesher S, et al. Pharmacokinetics of zidovudine and dideoxyinosine alone and in combination in patients with the acquired immunodeficiency syndrome. Br J Clin Pharmacol 1994; 37: 421–6.

    Article  PubMed  CAS  Google Scholar 

  30. Collier AC, Coombs RW, Fischl MA, et al. Combination therapy with zidovudine and didanosine compared with zidovudine alone in HIV-1 infection. Ann Intern Med 1993; 119: 786–93.

    PubMed  CAS  Google Scholar 

  31. Sahai J, Gallicano K, Garber G, et al. Pharmacokinetics of simultaneously administered zidovudine and didanosine in HIV-seropositive male patients. J Acq Immune Def Syndromes 1995; 10: 54–60.

    CAS  Google Scholar 

  32. Perry CM, Faulds D. Lamivudine: a review of its antiviral activity, pharmacokinetic properties and therapeutic efficacy in the management of HIV infection. Drugs 1997; 53: 657–80.

    Article  PubMed  CAS  Google Scholar 

  33. Staszewski S, Miller V, Rehmet S, et al. Virological and immunological analysis of a triple combination pilot study with loviride, lamivudine and zidovudine in HIV-1-infected patients. AIDS 1996; 10: F1–7.

    Article  PubMed  CAS  Google Scholar 

  34. Seifert RD, Stewart MB, Sramek JJ, et al. Pharmacokinetics of co-administered didanosine and stavudine in HIV-seropositive male patients. Br J Clin Pharmacol 1994; 38: 405–10.

    Article  PubMed  CAS  Google Scholar 

  35. Symonds WT, McDowell J, Chittick G, et al. The safety and pharmacokinetics of GW1592U89, zidovudine (ZDV) and lamivudine (3TC) alone and in combination after single-dose administration in HIV-infected patients [abstract P19]. AIDS 1996; 10 Suppl. 2: S23.

    Google Scholar 

  36. Barry M, Howe JL, Back DJ, et al. Zidovudine pharmacokinetics in zidovudine-induced bone marrow toxicity. Br J Clin Pharmacol 1994; 37: 7–12.

    Article  PubMed  CAS  Google Scholar 

  37. Stretcher BN, Pesce AJ, Hurtubise PE, et al. Pharmacokinetics of zidovudine phosphorylation in patients infected with the human immunodeficiency virus. Ther Drug Monit 1992; 14: 281–5.

    Article  PubMed  CAS  Google Scholar 

  38. Barry M, Khoo S, Back DJ, et al. The effect of zidovudine dose on the formation of intracellular phosphorylated metabolites. AIDS 1996; 10: 1361–7.

    Article  PubMed  CAS  Google Scholar 

  39. Moore K, Barrett JE, Shaw S, et al. Pharmacokinetics (PK) of lamivudine (3TC) phosphorylation in peripheral blood mononuclear cells (PBMC) from HIV-infected patients [abstract 42470]. 12th World AIDS Conference; 1998 Jun 28–Jul 3; Geneva.

  40. Daluge SM, Good SS, Faletto MB, et al. 1592U89, a novel carbocyclic nucleoside analogue with potent selective anti-human immunodeficiency virus activity. Antimicrob Agents Chemother 1997; 41: 1082–93.

    PubMed  CAS  Google Scholar 

  41. Hoggard P, Khoo S, Barry M, et al. Intracellular metabolism of zidovudine and stavudine in combination. J Infect Dis 1996; 174: 671–2.

    Article  PubMed  CAS  Google Scholar 

  42. Hoggard PG, Kewn S, Barry MG, et al. Drug interactions with d4T phosphorylation in vitro. Antimicrob Agents Chemother 1997; 41: 1231–6.

    PubMed  CAS  Google Scholar 

  43. Ho H-T, Hitchcock MJM. Cellular pharmacology of 2′,3′-dideoxy-2′,3′-didehydrothymidine, a nucleoside analog active against human immunodeficiency virus. Antimicrob Agents Chemother 1989; 33: 844–9.

    Article  PubMed  CAS  Google Scholar 

  44. Merrill DP, Moonis M, Chou T-C, et al. Lamivudine or stavudine in two- and three-drug combinations against human immunodeficiency virus type 1 replication in vitro. J Infect Dis 1996; 173: 355–64.

    Article  PubMed  CAS  Google Scholar 

  45. Havlir DV, Freidland G, Pollard R, et al. Combination zidovudine (ZDV) and stavudine (d4T) therapy versus other nucleosides: report of two randomised trials ACTG 290 and 298 [abstract]. 5th Conference on Retroviruses and Opportunistic Infections; 1998 Feb 1–5; Chicago.

  46. Veal GJ, Hoggard PG, Barry MG, et al. Interaction between 3TC (lamivudine) and other nucleoside analogues for intracellular phosphorylation. AIDS 1996; 10: 546–8.

    Article  PubMed  CAS  Google Scholar 

  47. Veal GJ, Barry MG, Khoo SH, et al. In vitro screening of nucleoside analog combinations for potential use in anti-HIV therapy. AIDS Res Human Retroviruses 1997; 13: 481–4.

    Article  CAS  Google Scholar 

  48. Kewn S, Veal GJ, Hoggard PG, et al. Lamivudine (3TC) phosphorylation and drug interactions in vitro. Biochem Pharmacol 1997; 54: 589–95.

    Article  PubMed  CAS  Google Scholar 

  49. Ruiz L, Romeu J, Martinez-Picado J, et al. Efficacy of triple combination therapy with zidovudine (ZDV) plus zalcitabine (ddC) plus lamivudine (3TC) versus double (ZDV + 3TC) combination therapy in patients previously treated with ZDV + ddC. ADS 1996; 10: F61–6.

    CAS  Google Scholar 

  50. Veal GJ, Wild MJ, Barry MG, et al. Effects of dideoxyinosine and dideoxycytidine on the intracellular phosphorylation of zidovudine in human mononuclear cells. Br J Clin Pharmacol 1994; 38: 323–8.

    Article  PubMed  CAS  Google Scholar 

  51. Veal GJ, Barry MG, Back DJ. Zalcitabine (ddC) phosphorylation and drug interactions. Antiviral Chem Chemother 1995; 6: 379–84.

    CAS  Google Scholar 

  52. Kewn S, Hoggard P, Veal GJ, et al. The intracellular activation of ddI (didanosine) in combination with other nucleoside analogues in vitro. Br J Clin Pharmacol 1998; 45: 518P.

    Google Scholar 

  53. Katlama C, Valantin MA, Calvez V, et al. ALTIS: an open pilot study of stavudine/lamivudine in antiretroviral-naive and -experienced patients [abstract]. 6th European Conference on Clinical Aspects and Treatment of HIV Infection; 1997 Oct 11–15; Hamburg, Germany.

  54. Sommadossi JP, Calvez V, Xie M-Y, et al. Altiphar: a study to assess the pharmacologic and virologic mechanisms contributing to decreased antiviral activity of a stavudine/lamivudine combination in zidovudine-experienced patients [abstract]. 6th European Conference on Clinical Aspects and Treatment of HIV Infection; 1997 Oct 11–15; Hamburg, Germany.

  55. Sommadossi JP, Zhou XJ, Moore J, et al. Impairment of stavudine (d4T) phosphorylation in patients receiving a combination of zidovudine (ZDV) and d4T (ACTG 290) [abstract]. 5th Conference on Retroviruses and Opportunistic Infections; 1998 Feb 1–5; Chicago.

  56. Phiboonbanakit D, Lloyd J, Khoo S, et al. Quantification of d4T triphosphate (d4TTP) in ZDV naive and ZDV experienced HIV infected individuals by an enzymatic assay [abstract 487]. 6th Conference on Retroviruses and Opportunistic Infections; 1999 Jan 31–Feb 4; Chicago.

  57. The Indinavir (MK 639) Pharmacokinetic Study Group. Indinavir (MK 639) drug interaction studies [abstract Mo.B.174]. XIth International Conference on AIDS; 1996 Jul 7–12; Vancouver.

  58. Gulick R, Mellors J, Havlir D, et al. Potent and sustained release antiretroviral activity of indinavir (IDV) in combination with zidovudine (ZDV) and lamivudine (3TC) [abstract LB7]. 3rd Conference on Retroviruses and Opportunistic Infections; 1996 Jan 28–Feb 2; Washington, DC.

  59. Perry CM, Balflour JA. Didanosine: an update on its antiviral activity, pharmacological properties and therapeutic efficacy in the management of HIV disease. Drugs 1996; 52: 928–62.

    Article  PubMed  CAS  Google Scholar 

  60. Flexner C. HIV protease inhibitors. N Engl J Med 1998; 338: 1281–92.

    Article  PubMed  CAS  Google Scholar 

  61. Sadler BM, Wald JA, Lou Y, et al. The single-dose pharmacokinetics of 141W94, zidovudine, and lamivudine when administered alone and in two- and three-drug combinations [abstract]. 6th European Conference on Clinical Aspects and Treatment of HIV-Infection; 1997 Oct 11–15; Hamburg, Germany.

  62. Ravitch JR, Bryant BJ, Reese MJ, et al. In vivo and in vitro studies of the potential for drug interactions involving the antiretroviral 1592 (abacavir) in humans [abstract]. 5th Conference on Retroviruses and Opportunistic Infections; 1998 Feb 1–5; Chicago.

  63. Hoggard PG, Mannion V, Barry MG, et al. Effect of protease inhibitors on nucleoside analogue phosphorylation in vitro. Br J Clin Pharmacol 1998; 45: 164–7.

    Article  PubMed  CAS  Google Scholar 

  64. Murphy RL, Montaner J. Nevirapine: a review of its development, pharmacological profile and potential for clinical use. Exp Opin Invest Drugs 1996; 5: 1183–99.

    Article  CAS  Google Scholar 

  65. D’Aquila RT, Hughes MD, Johnson VA, et al. Nevirapine, zidovudine, and didanosine compared with zidovudine and didanosine in patients with HIV-1 infection. Ann Intern Med 1996; 124: 1019–30.

    PubMed  Google Scholar 

  66. Morse GD, Fischl MA, Shelton MJ, et al. Single-dose pharmacokinetics of delavirdine mesylate and didanosine in patients with human immunodeficiency virus infection. Antimicrob Agents Chemother 1997; 41: 169–74.

    PubMed  CAS  Google Scholar 

  67. Adkin JC, Noble S. Efavirenz. Drugs 1998; 56(6): 1055–64.

    Article  Google Scholar 

  68. Barry M, Mulcahy F, Back DJ. Antiretroviral therapy for patients with HIV disease. Br J Clin Pharmacol 1998; 45: 221–8.

    Article  PubMed  CAS  Google Scholar 

  69. Fätkenheuer G, Theisen A, Rockstroh J, et al. Virological treatment failure of protease inhibitor therapy in an unselected cohort of HIV-infected patients. AIDS 1997; 11: F113–6.

    Article  PubMed  Google Scholar 

  70. Barry M, Feely J. Enzyme induction and inhibition. Pharmacol Ther 1990; 48: 71–94.

    Article  PubMed  Google Scholar 

  71. Eagling VA, Back DJ, Barry MG. Differential inhibition of cytochrome P450 isoforms by the protease inhibitors ritonavir, saquinavir, and indinavir. Br J Clin Pharmacol 1997; 44: 190–4.

    Article  PubMed  CAS  Google Scholar 

  72. Von Moltke LL, Greenblatt DJ, Grassi JM, et al. Protease inhibitors as inhibitors of human cytochromes P450: high risk associated with ritonavir. J Clin Pharmacol 1998; 38: 106–11.

    Google Scholar 

  73. Hsu A, Granneman GR, Japour A, et al. Evaluation of potential ritonavir and indinavir combination BID regimens [abstract A-57]. 37th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1997 Sep 28–Oct 1; Toronto, Canada.

  74. Noble S, Faulds D. Saquinavir: a review of its pharmacology and clinical potential in the management of HIV infection. Drugs 1996; 52(1): 93–112.

    Article  PubMed  CAS  Google Scholar 

  75. Yuen G, Anderson R, Daniels R, et al. Investigations of nelfinavir mesylate (NFV) pharmacokinetic (PK) interactions with indinavir (IDV) and ritonavir (RTV) [abstract]. 4th Conference on Retroviruses and Opportunistic Infections; 1997 Jan 28–Feb 2; Washington, DC.

  76. Sadler BM, Eron J, Wakeford J, et al. Pharmacokinetics of 141W94 and indinavir (IDV) after single-dose coadministration in HIV-positive volunteers [abstract A-56]. 37th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1997 Sep 28–Oct 1; Toronto, Canada.

  77. Merry C, Barry MG, Mulcahy F, et al. Ritonavir pharmacokinetics alone and in combination with saquinavir in HIV infected patients. AIDS 1998; 12: 325–7.

    Article  PubMed  CAS  Google Scholar 

  78. McCrea J, Buss N, Stone J, et al. Indinavir-saquinavir single dose pharmacokinetic study [abstract]. 4th Conference on Retroviruses and Opportunistic Infections; 1997 Jan 28–Feb 2; Washington, DC.

  79. Buss N, Fortovase Study Group. Saquinavir soft gel capsule (Fortovase): pharmacokinetics and drug interactions [abstract]. 5th Conference on Retroviruses and Opportunistic Infections; 1998 Feb 1–5; Chicago.

  80. Merry C, Barry MG, Mulcahy F, et al. Saquinavir pharmacokinetics alone and in combination with ritonavir in HIV-infected patients. AIDS 1997; 11: F29–33.

    Article  PubMed  CAS  Google Scholar 

  81. Kravcik S, Sahai J, Kerr B, et al. Nelfinavir mesylate (NFV) increases saquinavir-soft gel capsule (SQV-SGC) exposure in HIV+ patients [abstract]. 4th Conference on Retroviruses and Opportunistic Infections; 1997 Jan 28–Feb 2; Washington, DC.

  82. Merry C, Barry MG, Mulcahy F, et al. Saquinavir pharmacokinetics alone and in combination with nelfinavir in HIV-infected patients. AIDS 1997; 11: F117–20.

    Article  PubMed  CAS  Google Scholar 

  83. Sadler SM, Gillotin C, Chittick GE, et al. Pharmacokinetic drug interactions with amprenavir [abstract 12389]. 12th World AIDS Conference; 1998 Jun 28–Jul 3; Geneva, Switzerland.

  84. Brites C, Alcantara AP, Gimbo A, et al. Safety and efficacy of reduced doses of ritonavir (RTV) plus saquinavir (SQV) in the treatment of AIDS patients in Brazil [abstract 12114]. 12th World AIDS Conference; 1998 Jun 28–Jul 3; Geneva, Switzerland.

  85. McDowell JA, Sadler BM, Millard J, et al. Evaluation of potential pharmacokinetic (PK) drug interaction between 141W94 and 1592U89 in HIV+ patients [abstract A-62]. 37th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1997 Sep 28–Oct 1; Toronto.

  86. Gagnier P, Myers M, Lamson M, et al. Effect of nevirapine (NVP) on pharmacokinetics (PK) of indinavir (IDV) in HIV-1 patients [abstract]. 4th Conference on Retroviruses and Opportunistic Infections; 1997 Jan 28–Feb 2; Washington, DC.

  87. Dusek A, Myers M, Gagnier P, et al. Long term activity of nevirapine combined with indinavir in HIV infected adults [abstract]. 6th European Conference on Clinical Aspects and Treatment of HIV-Infection; 1997 Oct 11–15; Hamburg.

  88. Lamson M, Gagnier P, Greguski R, et al. Effect of nevirapine (NVP) on pharmacokinetics of (PK) of ritonavir (RTV) in HIV-1 patients [abstract]. 4th Conference on Retroviruses and Opportunistic Infections; 1997 Jan 28–Feb 2; Washington, DC.

  89. Sahai J, Cameron W, Salgo M, et al. Drug interaction study between saquinavir (SQV) and nevirapine (NVP) [abstract]. 4th Conference on Retroviruses and Opportunistic Infections; 1997 Jan 28–Feb 2; Washington, DC.

  90. Barry MG, Merry C, Lloyd J, et al. Variability in trough plasma saquinavir concentrations in HIV patients: a case for therapeutic drug monitoring. Br J Clin Pharmacol 1998; 45: 501–2.

    PubMed  CAS  Google Scholar 

  91. Merry C, Barry MG, Mulcahy F, et al. The pharmacokinetics of combination therapy with nelfinavir plus nevirapine. AIDS 1998; 12: 1163–7.

    Article  PubMed  CAS  Google Scholar 

  92. Skowron G, Leoung G, Dusek A, et al. Stavudine (d4T), nelfinavir (NFV) and nevirapine (NVP): preliminary safety, activity and pharmacokinetic (PK) interactions [abstract]. 5th Conference on Retroviruses and Opportunistic Infections; 1998 Feb 2–5; Chicago.

  93. Fiske W, Benedek IH, Joseph JL, et al. Pharmacokinetics of efavirenz (EFV) and ritonavir (RIT) after multiple oral doses in healthy volunteers [abstract 42269]. 12th World AIDS Conference; 1998 Jun 28–Jul 3; Geneva, Switzerland.

  94. Fiske WD, Benedek IH, White SJ, et al. Pharmacokinetic interaction between efavirenz (EFV) and nelfinavir mesylate (NFV) in healthy volunteers [abstract]. 5th Conference on Retroviruses and Opportunistic Infections; 1998 Feb 2–5; Chicago.

  95. Piscitelli S, Vogel S, Sadler B, et al. Effect of efavirenz (DMP266) on the pharmacokinetics of 141W94 in HIV infected patients [abstract]. 5th Conference on Retroviruses and Opportunistic Infections; 1998 Feb 2–5; Chicago.

  96. Cox SR, Ferry JJ, Batts DH, et al. Delavirdine and marketed protease inhibitors: pharmacokinetic interaction studies in healthy volunteers [abstract]. 4th Conference on Retroviruses and Opportunistic Infections; 1997 Jan 28–Feb 2; Washington, DC.

  97. Ferry JJ, Herman BD, Cox SR, et al. Delavirdine (DLV) and indinavir (IDV): a pharmacokinetic (PK) drug-drug interaction study in healthy adult volunteers [abstract]. 4th Conference on Retroviruses and Opportunistic Infections; 1997 Jan 28–Feb 2; Washington, DC.

  98. Morse GD, Shelton MJ, Hewitt RG, et al. Ritonavir (RIT) pharmacokinetics (PK) during combination therapy with delavirdine [abstract]. 5th Conference on Retroviruses and Opportunistic Infections; 1998 Feb 2–5; Chicago.

  99. Cox SR, Schneck DW, Herman BD, et al. Delavirdine (DLV) and nelfinavir (NFV): a pharmacokinetic (PK) drug drug interaction study in healthy adult volunteers [abstract]. 5th Conference on Retroviruses and Opportunistic Infections; 1998 Feb 2–5; Chicago.

  100. Perry CM, Noble S. Saquinavir soft-gel capsule formulation: a review of its use in patients with HIV infection. Drugs 1998; 55: 461–86.

    Article  PubMed  CAS  Google Scholar 

  101. Shelton MJ, Hewitt RG, Adams JM, et al. Delavirdine (DLV) mesylate pharmacokinetics (PK) during combination therapy with ritonavir (RIT) [abstract A-63]. 37th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1997 Sep 28–Oct 1; Toronto.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Barry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barry, M., Mulcahy, F., Merry, C. et al. Pharmacokinetics and Potential Interactions Amongst Antiretroviral Agents Used To Treat Patients with HIV Infection. Clin Pharmacokinet 36, 289–304 (1999). https://doi.org/10.2165/00003088-199936040-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199936040-00004

Keywords

Navigation