Article Text

Download PDFPDF
Original research
Can proteomics elucidate mechanisms of antimicrobial resistance in Neisseria gonorrhoeae that whole genome sequencing is unable to identify? An analysis of protein expression within the 2016 WHO N. gonorrhoeae reference strains
  1. Jianhe Peng,
  2. Julie Russell,
  3. Sarah Alexander
  1. National Collection of Type Cultures, Public Health England, London, UK
  1. Correspondence to Dr Sarah Alexander, National Collection of Type Cultures, Public Health England, London, UK; sarah.alexander{at}phe.gov.uk

Abstract

Objectives Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is of increasing concern. This study established a quantitative, scalable proteomics method to examine the WHO panel of N. gonorrhoeae isolates with completed closed genomic sequences and well-defined phenotypical and genotypical AMR patterns, to gain a greater understanding of AMR in N. gonorrhoeae.

Methods 14 WHO reference strains were propagated, pooled stable isotope labelled lysates were used as an internal standard (IS). Protein lysates were mixed with IS, digested with trypsin and fractionated before analysis by nano-LC/MS/MS, in triplicate. The susceptible strain WHO F was used as reference to which the proteomic profiles of other strains were compared. Hierarchical clustering and permutation adjusted t-tests were performed to find proteins with significant fold changes.

Results Standardised, reproducible protein expression profiles in N. gonorrhoeae reference strains were produced. Strains that have previously been shown to be highly similar using genomics, displayed different proteomic profiles. Several proteins from efflux pumps to stress responses, such as oxidative stress, toxin/antitoxin systems, were found to be altered in AMR strains. LtgE was upregulated in strains which displayed chromosomally mediated resistance to penicillin. MacB (the ATP hydrolysis part of macrolide efflux pump MacA-B), was ~twofold upregulated in WHO V (MIC of azithromycin >256 mg/L) and maybe associated with azithromycin resistance.

Conclusions A robust method was developed to study protein expression in N. gonorrhoeae. The proteome profiles could differentiate genetically similar stains. This study identified complex mechanisms in N. gonorrhoeae which may be associated with AMR.

  • antibiotic resistance
  • neisseria gonorrhoeae
  • gonorrhoea

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Footnotes

  • Handling editor Anna Maria Geretti

  • Twitter @sarah1alexander

  • Contributors JP and SA designed this experiment. JP conducted all laboratory work and initial data analysis. All authors contributed to manuscript production.

  • Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

  • Competing interests None declared.

  • Patient consent for publication Not required.

  • Provenance and peer review Not commissioned; internally peer reviewed.

  • Data availability statement Data are available in a public, open access repository within the public database ProteomeXchange with the reference number PXD016467.