Recurrent genital tract infection: a result of induced immunosuppression?

C SONNEX

From the Academic Department of Genitourinary Medicine, University College and Middlesex Hospital, School of Medicine, The Middlesex Hospital, London, UK

Many of the diseases commonly encountered in clinical practice may be considered as "recurrent", there being episodes of disease activity followed by variable periods of quiescence or low-grade activity. Although the aetiology of many of these conditions is unknown (for example, rheumatoid arthritis, ulcerative colitis, multiple sclerosis), certain infectious diseases are well known for their ability to recur. Interestingly, the genital tract appears particularly prone to recurrent disease. For example, true recurrence rather than reinfestation has been well documented for herpes simplex virus (HSV) and human papillomavirus infection, candidiasis and non-gonococcal urethritis. For the majority of patients recurrences are infrequent and pose few problems. However, a significant minority suffer frequent recurrences and experience severe physical and psychological morbidity. This article reviews various studies which have attempted to examine the immunopathogenesis of recurrent genital tract infection or which have suggested possible mechanisms to account for disease recurrence. Before detailing the various infections, however, it is important to note that the immune mechanisms operating at mucosal sites are somewhat different from those providing systemic immunity. Mucosal antibody secretion involves a complex system in which IgA predominates. The IgA in genital secretions (secretory IgA) is different from the IgA found in serum and is composed of a 10-S dimer, J chain, and a secretory component. The complexity of mucosal humoral immunity has been well reviewed by McNabb and Tomasi.1 Mucosal cell-mediated immunity also exhibits certain unique characteristics. For example, the predominance of suppressor/cytotoxic T lymphocytes in the genital tract contrasts with the pattern in lymphoid tissue where T-helper/inducer lymphocytes outnumber suppressor cells.2,3

GENITAL HERPES

Recurrent episodes of genital herpes are reported by 55% of patients after primary genital HSV type-1 infection and 88% following HSV type-2 infection.4 Although the mean recurrence rate of genital HSV type-2 infection has been reported as 0.33 per month,5 a small proportion of infected individuals exhibit a much higher frequency of recurrences. Although immunocompromised patients, such as those with haematological malignancies, organ transplants or those infected with human immunodeficiency virus (HIV), may suffer frequent, prolonged and often severe recurrences, the majority of patients with frequently recurrent herpes appear immunocompetent. However, a more detailed analysis of their immune responses often demonstrates certain abnormalities. For example, several studies have reported that lymphocytes from these individuals fail to elaborate lymphokines in response to HSV antigen as compared with individuals with well controlled latent infection.6-8 This defect appears specific for herpes as responses to other antigens may be normal. Sheridan et al found that virus specific leucocyte migration-inhibition factor (LIF) production was impaired during episodes of recurrence and returned to normal during convalescence.9 This inhibition of LIF production correlated with a significant increase in the proportion of CD8+ and lymphocytes with anti-HLA DR surface markers. Similarly, work from the guinea-pig model of recurrent HSV-2 has shown that "suppressor" cells may be found in the spleen during recrudescence but not quiescence nor in animals without a history of recurrent disease.10 These cells were able to suppress the induction of specific lymphoproliferative responses in vitro. Two functionally distinct suppressor T cell populations have been identified in the mouse following injection of HSV infected cell sonicates.11-13 One acts on the induction of delayed hypersensitivity (DH) responses (Lyt 1+ 2− and IJ+) and the other population suppresses already established DH responses (Lyt 1− 2+, IJ+). The suppressor T cell response is herpes type specific14 and appears, in addition, to be specific for DH responses.14

Address for reprint requests: Dr C Sonnex, Academic Department of Genitourinary Medicine, The Middlesex Hospital, London W1N 8AA, UK.

Accepted for publication 8 September 1989
This latter feature has been termed "split tolerance" by Nash et al since cytotoxic T cells and anti-herpes antibodies are induced thus providing immunity to re-infection. Horohov et al have more recently suggested that suppressor cell induction may require the interaction of at least three different T cell populations. These included cells expressing the Lyt 2+, the Lyt 1+ and the IJ antigens. The interaction of these cells also involve the production of soluble suppressor factors. Horohov et al identified a 68,500 dalton HSV-specific suppressor factor in supernatants from HSV-1 stimulated mouse splenocytes. This contrasts with the 115,000 dalton suppressor factor (SF) consisting of two disulphide-bound proteins recently described by Aurelian et al. HSV-SF is thought to induce Lyt 2+ suppressor effector cells which respond by producing non-specific suppressor factors which act as the ultimate suppressors. A small dialysable factor (molecular weight 8,200 dalton) which inhibits both LIF activity and interferon mediated enhancement of natural killer activity has also been recently described. Interestingly, treatment of recrudescent mononuclear cells with indomethacin restored LIF activity. Although suggestive of a prostaglandin mediated inhibition further analysis has failed to document prostaglandin involvement.

Vaginal candidiasis

Approximately three quarters of all adult women suffer at least one attack of candida vaginitis and 45% have more than one episode of infection. A small proportion of women suffer frequent recurrences and although not life-threatening, the symptoms can be debilitating. The importance of the cell mediated response in controlling candida infection is well demonstrated by the severe mucocutaneous disease occurring in patients with defective cell mediated immunity such as DiGeorge's syndrome, chronic mucocutaneous candidiasis, haematological malignancy or HIV infection. Although these experiments of nature aid our understanding of immune responses, much of our knowledge of the immunology of candidiasis has resulted from animal models. In mice, a component of the candida cell has been shown to induce a suppressor B lymphocyte population which in turn depresses T cell activity. More recently, the glycoprotein of *C. albicans* cell walls was found to suppress normal cellular immune responses to itself while at the same time potentiating specific antibody production. The suppressive effect was highly antigen specific. The induction of suppressor B-lymphocytes in vitro by formalin killed *C. albicans* has also been recently reported. Work with human lymphocyte cultures has documented the appearance of suppressor cells following stimulation by candida extracts, including purified polysaccharide (MPPS). In addition, MMPS activated human T cells have been found to produce a non-specific inhibitor of interleukin-1 (IL-1) production. This is of some importance since IL-1, produced by macrophages and certain other cells, is a prime activator of antigen primed T cells which in turn produce interleukin-2 (IL-2) and other lymphokines. IL-2 plays a key role in the proliferation of activated T cells. It should be emphasised, however, that the relevance of these studies to localised infection, such as vaginal candidiasis, is at present uncertain. Studies examining the immunopathogenesis of recurrent vaginal candidiasis are somewhat limited, Hobbs et al reported a reduced in vitro T cell proliferative response to candida extract in 15 of 23 women with recurrent candida vaginitis. Similarly, Syverson et al observed a lack of cellular immune response to candida antigens in women with chronic candida vaginitis. Witkin et al have more recently reported that some women with recurrent candidiasis produce candida-specific suppressor lymphocytes (unspecified surface markers) and a soluble factor which blocks lymphocyte blast formation to candida. A follow-up to this study found that patients lymphocytes became fully responsive to candida when co-cultured with control macrophages or patient macrophages plus ibuprofen. Patient macrophages incubated with candida appeared to produce an excess of prostaglandin sufficient to inhibit the lymphocyte proliferative response to candida antigen. The collaboration between macrophages/monocytes and regulatory T cells in the initial induction of suppressor T cells is well documented. Moreover, the monocyte-mediated suppression of T and B lymphocyte proliferation and B cell maturation appears to involve the activity of prostaglandin E2 on T lymphocytes.

Condylomata acuminata

A proportion of patients with genital warts have lesions which are either resistant to treatment or frequently recur following treatment. A small number of studies have suggested that impaired cell mediated immunity may be responsible. Seski et al reported that women with recalcitrant genital warts and vulval intraepithelial neoplasia produced abnormal lymphocyte transformation responses to several mitogens. Impaired delayed hypersensitivity, assessed by leucocyte migration inhibition and tuberculin and dinitrochlorobenzene skin tests, has also been reported in patients with genital warts of long duration. A study of patients with "genital neoplasia-papilloma syndrome" (HPV-associated lesions in multiple genital sites with at least one intraepithelial or invasive squamous neoplasia) has documented decreased lymphocyte proliferative responses to mitogens and
increased suppressor-cytotoxic T-cells (CD8+) compared with control subjects. Interestingly, over 50% of the patients studied had a history of recurrent candida infections. Immunosuppressed patients with defective cell mediated immunity are particularly prone to develop multiple intractable genital warts, again emphasising the importance of the cell mediated immune response.

CHLAMYDIA TRACHOMATIS

Chlamydia trachomatis causes approximately 30–50% of non-gonococcal urethritis and recurrence or persistence of symptoms post-treatment has been reported to occur in 19% of cases. Chlamydiae are potent inducers of B lymphocyte proliferation. Whereas relatively small numbers of organisms generate this response, larger numbers of chlamydia fail to stimulate B cell proliferation but induce potent suppressor T cell lymphocyte activity. Thus during early infection B cell proliferation is thought to occur. Subsequently, infected cells release organisms which result in stimulation of suppressor T cells thereby leading to a down-regulation of the immune response. It should be emphasised that this hypothetical model may not apply to localised infection of the male urethra. Further studies are required to determine the relevance of suppressor cell activation in recurrent urethritis.

Conclusion

The genital infections discussed in this article all share the ability to produce frequent recurrences in certain individuals. Examining the immunological mechanisms underlying these recurrences reveals cell-mediated immunosuppression as a common feature. This immunosuppression may be antigen specific or non-specific and involves activated suppressor cells and/or the production of soluble inhibitory factors.Suppressor systems are known to regulate the immune responses to a variety of infectious agents and are the subject of recent reviews. A general feature of the suppressor T-cell system is the involvement of major histocompatibility complex genes in the induction and expression of suppressor T-cell activity. A relationship has been documented between HLA-B15 antigen and low in-vitro and in-vivo responsiveness to candida antigen and between HLA-A1 and recurrent circumanal herpes infection. Information regarding the HLA status of patients with recurrent genital tract infection is lacking. Further work is required to elucidate fully the role of suppressor cells and their products in the pathogenesis of recurrent genital tract infection in humans. This is of some importance since they could provide a target for treatment aimed at breaking the disease cycle. In addition, the reports of prostaglandin E2 induced immunosuppression and the abrogation of antigen-specific suppression of mononuclear cell proliferation by prostaglandin inhibitors may also provide a basis for therapy. Preliminary results suggest that some women with recurrent candidiasis benefit from taking ibuprofen. Although this particular medication had no effect in treating clinical recurrences of genital herpes the use of ibuprofen, or a similar drug, as a prophylactic agent has not been assessed.

There are obviously many avenues along which future research could proceed. Our knowledge of local immunity within the genital tract is slowly growing and the concept of “genital tract associated lymphoid tissues”, comparable to the skin and gut-associated lymphoid tissues, may soon be appreciated. The role of suppression of local immunity (for example, IgA responses), as suggested by Nash, is one particular area which merits investigation. An improved understanding of the immunopathogenesis of recurrent genital tract infection will hopefully enable us to manage these debilitating conditions rather more effectively.

I thank Dr Q Sattentau, Dr C Loveday and Professor J H L Playfair for their constructive advice and criticism.

References

Recurrent genital tract infection: a result of induced immunosuppression?

26 Borkowsky W, Valentine FT. The proliferative response of human lymphocytes to antigen is suppressed preferentially by lymphocytes precultured with the same antigen. J Immunol 1979;122:1867–73.

