Is screening for *Chlamydia trachomatis* infection cost effective?

Jorma Paavonen

Chlamydial infections are the most prevalent bacterial sexually transmitted infections recognised throughout the world. According to the WHO, 50–70 million chlamydial infections are detected annually worldwide. In most developed countries, sexually transmitted chlamydial infections are still strikingly common particularly among adolescents, and 10–20 times more common than gonococcal infections. In our recent study, the prevalence of *Chlamydia trachomatis* infection was 5.6% among asymptomatic women attending a family planning clinic and a student health clinic. Chlamydial infections cause major medical, social, and economic problems. Sequelae of *C. trachomatis* infection are extremely costly to the healthcare system, and include pelvic inflammatory disease (PID), ectopic pregnancy, tubal factor infertility (TFI), epididymitis, proctitis, and arthritis. Chlamydial infections, like STDs in general, are primarily a woman's healthcare issue since the manifestations and consequences in women are more damaging to the reproductive tract than in men. Expensive medical high technology, such as in vitro fertilisation (IVF), has largely emerged because of reproductive tract damage caused by sexually transmitted chlamydial infections. There is a strong link between past chlamydial infection and TFI or ectopic pregnancy. It has been suggested that *C. trachomatis* infection is a significant risk factor for other adverse pregnancy outcomes—that is, preterm delivery and spontaneous abortion. Recent studies also suggest that *C. trachomatis* infection is an independent risk factor for the development of cervical neoplasia. Since chlamydial infections are usually asymptomatic, the key to the prevention of chlamydial infections and their sequelae is screening using a high performance diagnostic test. Screening based on first void urine (FVU) testing by gene amplification techniques, in combination with single dose therapy with azithromycin may have a major impact on the prevention and control of asymptomatic chlamydial infections. Disease prevention can be primary, secondary, or tertiary.

Tertiary prevention of acute and chronic chlamydial infections of the upper genital tract has largely failed because substantial tubal damage has already occurred by the time symptoms develop or the patient presents with infertility or ectopic pregnancy. Primary prevention involves preventing both exposure to and acquisition of chlamydial infection through lifestyle counselling and health education. Clearly, more emphasis should be directed to primary prevention by implementing health education programmes among adolescents. Secondary prevention by universal screening, however, is likely to play the most critical role in the prevention of PID and long term sequelae, although this still needs to be proved in randomised controlled intervention trials. Secondary prevention means early detection of subclinical disease by screening or case finding in order to prevent lower genital tract infection from ascending to the upper genital tract. Chlamydial infection fills the general prerequisites for disease prevention by screening since chlamydial infections are highly prevalent, are associated with significant morbidity, can be diagnosed, and are treatable.

Cost analyses are becoming more common among trials which compare therapeutic or procedural healthcare interventions. The most widely known form of economic evaluation is cost-benefit analysis. It is restricted to those forms of evaluation that are used to place a monetary value on benefits and outcomes. This makes cost-benefit analysis the most comprehensive and theoretically sound form of economic evaluation. On the other hand, in cost effectiveness analysis the outcomes are not measured in monetary units, but in clinical units such as cases of PID or TFI. Recent studies have addressed the cost effectiveness of identifying and treating *C. trachomatis* infections in asymptomatic women. Genc and Mardh showed that when the prevalence of chlamydial infection exceeded 6%, screening of women with DNA amplification assay of endocervical swabs (and treatment of positive women with a single oral dose of azithromycin) was the most cost effective intervention strategy. If the prevalence was even higher, screening with enzyme immunoassay of cervical specimens also generated savings and improved the cure rates compared with a “no screening” situation. Diagnosis of *C. trachomatis* by tissue cell culture of cervical swabs was cost effective only when the prevalence of infection was greater than 14%. Most of the savings generated by the screening strategy were attributable to prevention of complications and sequelae of chlamydial infection in women. However, the study anticipated that only women who have clinical symptoms of PID are at risk for infertility, ectopic pregnancy, or chronic pelvic pain. Hence, subclinical or silent upper genital tract infections caused by *C. trachomatis* were not considered. We recently developed a computer based decision tree model in order to conduct a more thorough cost-benefit analysis of screening versus no screening situation, based on testing of first void urine specimens with PCR among women. The decision tree
model can be used in a wide range of socioeco-
omic analyses.18 It is a quantitative technique
which measures the overall performance of a
specific healthcare intervention, such as a new
diagnostic test. We also considered silent or
subclinical chlamydial infections in order to
improve the reliability of the results.
Compared with conventional diagnostic meth-
ods, such as cell culture or enzyme immunoas-
say, PCR and LCR allow testing of FVU
samples in both women and men with a high
level of sensitivity and specificity.19-21
According to the model, in the
screening situation systematic FVU screening for C
trachomatis was not performed, and only sympto-
matic women were tested using conventional
fluorescent antibody (FA) confirmed enzyme
immunosassay on cervical swabs (MicroTrak
Chlamydia EIA, Syva Co, Palo Alto, CA,
USA). C trachomatis positive women and their
current partners were contacted and treated
systematically with a single dose of azithromycin 1 g.
In the screening situation a FVU screening
test was 50% less if the participation rate in the
screening programme was at least 75%. When the sensitivity of
the screening test was 90%, the threshold value for the prevalence of C trachomatis
infection was as low as 3-2% (that is, screening in a
low prevalence population would still be cost effective).
The cost savings increased with increasing prevalence, and when the
prevalence approached 10% (for example, in a high
risk population) the net savings were approxi-
mately 30% per capita. Sensitivity analyses
showed that in addition to lower costs, the
screening situation also produced considerable
health benefits compared with the no-screening
situation—that is, the proportion of cured patients
increased by about 85% and about
50% less suffered from long term complica-
tions.
There is clear evidence that systematic
screening of asymptomatic populations
decreases the incidence of C trachomatis infec-
tions. This has been documented both
in nationwide screening programmes22 and in
screening programmes performed in other
defined populations in which the screening
activity has remained stable.23 Furthermore,
recent randomised clinical trial have shown
that intervention with selective screening of
chlamydial infections effectively reduces the
incidence of PID.7 It still remains to be seen
whether such intervention will also have a sig-
nificant effect on the rate of long term sequ-
ceae of chlamydial infections.
Since C trachomatis is the major cause of
female genital tract infections and infertility
and adverse pregnancy outcome, prevention
and control of these infections and their
sequelae will have a major impact on the
reproductive health of women. Further socio-
economic studies linking the cost of secondary
prevention of C trachomatis infections and the
cost of infertility or adverse pregnancy out-
come are warranted.
1 Piot P, Islam MQ. Sexually transmitted diseases in the
1990s. Global epidemiology and challenges for control.
2 Paukku M, Puolakainen M, Apter D, Hirvonen S,
Pasvonen J. First void urine testing for Chlamydia trachomatis
by polymerase chain reaction in asymptomatic
women. Sex Transm Dis (in press).
3 Witkin SS. Immune pathogenesis of asymptomatic
Chlamydia trachomatis infections in the female geni-
4 Hakama M, Lehtinen M, Knekt P, Aromaa A, Leinikki F,
Miettinen A, et al. Serum antibodies and subsequent cervi-
cal neoplasms: a prospective study with 12 years follow-
5 Lehtinen M, Diller J, Knekt P, Luostarinen T, Aromaa A,
Kimbauer R, et al. Serologically diagnosed infection
with human papillomavirus type 16 and risk for subsequent
development of cervical carcinoma: nested case-control
6 Pasvonen J. Chlamydia and cancer. Proceedings of the
Third Meeting of the European Society for Chlamydia
Research, Chantilly, France 1996:167.
7 Scholes D, Stergachis A, Hendrich FE, Andrika H, Holme
KK, Stamm WE, et al. Prevention of pelvic inflammatory
disease by screening for cervical chlamydial infection. N
8 Genc M, Ruusuvuara L, Mardh P-A. An economic eval-
uation of screening for Chlamydia trachomatis diagno-
sis among adolescent males. JAMA 1995;278:2057-64.
9 Neumann PJ, Gharib SD, Weinstein MC. The cost of
1994;331:239-43.
10 Lappalainen M, Sintonen H, Koskiinen M, Hedman K,
Hilnesaapu A, Ammala P, et al. Cost-benefit analysis of
screening for toxoplasmosis during pregnancy. Scan
11 Rosenberg MJ, Waugh MS. Doxycycline or ofloxacin
for outpatient chlamydial pelvic inflammatory disease?
A cost-benefit and cost-effectiveness analysis. Obstet
12 Goldfarb JM, Austin C, Low-Mendelsohn PJ, et al. Noninvasive
tests for diagnosis of Chlamydia trachomatis, a case to win.
The Swedish experience. Am J Obstet Gynecol 1995;172:
S7-S13.12 Goldfarb JM, Austin C, Low-Mendelsohn PJ, et al. Noninvasive
tests for diagnosis of Chlamydia trachomatis, a case to win.
The Swedish experience. Am J Obstet Gynecol 1995;172:
S7-S13.
14 Robinson R. Economic evaluation and health care.
15 Genc M, Mardh P-A. A cost-effectiveness analysis of
screening and treatment for Chlamydia trachomatis
infection in asymptomatic women. Ann Intern Med
16 Marrizzo JM, Celum CL, Fine D, Delisle S, Mosure DJ,
Hansfield RH. Cost-effectiveness of selective vs
universal cervical screening for Chlamydia trachomatis
infection in women attending family planning and STD
clinics. In: Orfila J, Byrne GL, Chernensky MA, Grayson J, Jones RB,
Redig GL, et al. eds. Chlamydial infections. Bologna:
Societa Editrice Esculapio, 1994;63-4.
17 Pasvonen J, Puolakainen M, Paukku M, Sintonen H.
Cost-benefit analysis of screening for cervical Chlamydia
trachomatis infection in low prevalence population. Proceed-
ings of the Third Meeting of the European Society for
Chlamydia Research, Chantilly, France 1996:254.
18 Sacket DL, Haynes RB, Guyatt GH. Clinical epidemiology:
basic science for clinical medicine. Toronto: Little, Brown
19 Quinn TC, Welsh L, Lentz A, Crotchfelt K, Zenilman J,
Newhall J, et al. Diagnosis of Chlamydia trachomatis
infection in urine ies by AmpliCor polymerase chain reac-
tion in women and men attending sexual health
20 Lee HH, Chernesky MA, Schachter J, Buczak JD, Andrews WW,
Muldoon S, et al. Diagnosis of Chlamydia trachomatis
genitourinary infection in women by ligase chain reaction assay of urine. Lancet 1995;345:
213-6.
21 Schachter J, Moncada J, Whitlend R, Shaw H, Bolan G,
Buczak JD, et al. Noninvasive test for first catch urine
samples of women with Chlamydia trachomatis infection: application of ligase
chain reaction to first-catch urine specimens of women. J
22 Ripa T, Baum M. Public health care against
C trachomatis, a case to win. The Swedish experience
and model calculations. Eleventh Meeting on the
International Society for STD Research, New Orleans,
23 Apter D. Incidence of chlamydial genital infections in a
Scottish student population. (Abstract 59.) Congress of
the European Union for School and University Health
and Medicine, York, UK, 1995.