The *sac-4* gene of *Neisseria gonorrhoeae* and co-existing chlamydial infection

D J Phillips, C Patrizio, A Moyes, H Young

Background/objectives: Recently, the *sac-4* gene in *Neisseria gonorrhoeae* was postulated to increase the risk of developing mixed gonococcal and chlamydial infection. The aims of this study were to determine the frequency of the *sac-4* gene in a larger sample of isolates of different serovars and to assess the prevalence of *sac-4* in gonococcal isolates from patients with and without coexisting chlamydial infection.

Methods: Isolates from 259 episodes of gonorrhea were tested by a PCR assay for the *sac-4* gene. The presence of co-existing chlamydial infection was determined from both laboratory and GUM clinical records.

Results: The overall prevalence of *sac-4* was 57.5% (149/259). The prevalence was not the same in all serovars and ranged from 34.9% in serovar 1B2 to 100% in serovar 1B18. Exact logistic regression analysis indicated significant differences in *sac-4* prevalence in isolates of different serovars. The prevalence of *sac-4* was 69.5% (41/59) in gonococcal isolates from patients with co-existing chlamydial infection compared with 57.9% (62/107) for those without chlamydial infection. Exact logistic regression analysis showed that the slightly increased *sac-4* prevalence among chlamydia positive patients (p=0.2) virtually disappeared when serovar status was taken into account (p>0.9).

Conclusion: The *sac-4* gene of the gonococcus does not increase the risk for mixed chlamydial infection.

(*Sex Transm Inf 2000;76:400–402*)

Keywords: dual infection; *Neisseria gonorrhoeae; Chlamydia trachomatis; sac-4*

Introduction

Dual infection of the genital tract with *Chlamydia trachomatis* and *Neisseria gonorrhoeae* is well established with a prevalence ranging from 14–43% but little is known of the epidemiology and associated clinical features of such co-existing infections. Recently a gene, *sac-4*, was found in a high proportion of gonococcal isolates from patients with coexisting chlamydial infection and it was postulated that *sac-4* increased the risk of development of mixed gonococcal and chlamydial infection. This gene conferred stable (not lost on subculture) complement factor C1q dependent serum resistance in gonococci. The aims of this study were to use the polymerase chain reaction (PCR) assay described by Nowicki et al. to determine the frequency of the *sac-4* gene in a larger range of isolates of different serovars; and to assess the prevalence of *sac-4* in gonococcal isolates from patients with and without coexisting chlamydial infection.

Materials and methods

PATIENTS AND ISOLATES

Isolates from 259 episodes of gonorrhea in 80 female and 179 male patients attending a genitourinary medicine (GUM) clinic were studied. The isolates represented 19 different serovars. The prevalence of *sac-4* was determined for each of the common serovars, arbitrarily defined as comprising more than 15 isolates each: serovars represented by less than 15 isolates were grouped together as “other 1A” and “other 1B” serovars (see Table 1). The presence of coexisting chlamydial infection was determined from laboratory and GUM clinical records.

EXTRACTION OF DNA AND PCR ASSAY

The growth from an overnight plate culture was mixed with 1 ml of saline, centrifuged, resuspended in 200 μl of distilled water, and heated for 20 minutes at 100°C. After cooling and centrifugation the supernatant from each tube was stored at −20°C for PCR testing.

Primers were as described by Nowicki et al; Primer A, 5’ TAT CTG CAG CAT CTC CTT TCC AAC C 3’ Primer B, 5’ TAG GAA TTC CTC TGA AGG TTA CGG 3’.
The sac-4 gene of Neisseria gonorrhoeae and coexisting chlamydial infection

A volume of 2 µl of DNA template was added to 100 µl reaction mix (50 mM KCl, 10 mM TRIS-HCl, 15 mM MgCl₂, and 0.1% Triton X-100) containing 0.5 units of Taq Polymerase (Promeg Corporation, Southampton), 20 µmol of each DNTP (Promega), and 0.1 µmol of each primer (Oswel DNA Service, Southampton). The reaction mixture was overlaid with two drops of liquid paraffin. The amplification reaction consisted of 30 cycles of 1 minute denaturation at 92°C, 1 minute annealing at 55°C, and 1 minute extension at 72°C. An aliquot of 20 µl was removed for electrophoretic analysis on a 2% agarose gel. A band corresponding to 344 base pairs indicated the presence of sac-4. A sac-4 negative and positive control strain were included in each run.

Statistical Analysis
This was performed using exact logistic regression.

Results
PCR analysis showed that 149 isolates (57.5%) were sac-4 (each strain gave a single band corresponding to 344 base pairs) and 110 isolates (42.5%) were sac-4 (no bands present). An example of a typical gel is shown in figure 1. The prevalence of sac-4 ranged from 34.9% in serovar 1B2 to 100% in serovar 1B18 (table 1).

We are grateful to Hannah Wills for checking records for coexisting gonococcal and chlamydial infections and to Dr John Duffy, director of Statlab Statistical Laboratory, Department of

Discussion
The majority of isolates, 57.5% (149/259) in our local population of gonococci, were sac-4 positive. However, the prevalence of sac-4 was not significantly higher (p=0.2) in gonococcal isolates from patients with coexisting chlamydial infection (69.5%) than in those without (57.9%). These findings suggest that sac-4 does not increase the risk of developing mixed infection with C trachomatis. Our findings differ from those of Nowicki et al who found sac-4 in 71% (10/14) of gonococcal strains isolated from patients with mixed gonococcal and chlamydial infection and 7% (1/14) in isolates from patients with gonococcal infection only. Using exact logistic regression analysis we have shown that there are significant differences in the prevalence of sac-4 between certain serovars.

Both epidemiological and biological factors may play a part in the occurrence of coexisting gonococcal and chlamydial infection. However our findings do not support a biological role for sac-4 in the development of mixed infection.

We are grateful to Hannah Wills for checking records for coexisting gonococcal and chlamydial infections and to Dr John Duffy, director of Statlab Statistical Laboratory, Department of

www.sextransinf.com
Mathematics and Statistics, University of Edinburgh for performing the statistical analysis.

Contributors: The study was designed by HY; CP set up the sac-4 PCR assay in the laboratory; DJP performed sac-4 testing of the isolates; AM performed serotyping and provided valuable comments in the development of the manuscript; DJP and HY were responsible for the analysis of the data and preparation of the manuscript.

