LETTERS TO THE EDITOR

Methicillin resistant Staphylococcus aureus (MRSA) balanoposthitis in an insulin dependent diabetic male

EDITOR,—Balanoposthitis is a common condition affecting 11% of the male attendees at GUM clinics.1 It is an inflammation of the glans penis and the prepuce, and its causes include bacterial and yeast infections, parasitic infestations, trauma, and irritants.2 However, to our knowledge, no case has been reported to be caused by MRSA.

A 49 year old insulin dependent diabetic male presented as an inpatient for repair of an upper jaw fracture developed a penile itch with swollen foreskin, which was difficult to retract, together with longitudinal fissures on the prepuce and subpreputial discharge. In his recent past he had had two incidents of unprotected sexual intercourse with two known females. He was clinically diagnosed as having candida balanitis and was commenced on clotrimazole cream, which did not produce a clinical response over the course of a week. The swabs taken before the commencement of clotrimazole cream failed to grow candida; however, MRSA resistant to erythromycin, penicillin, and flucloxacillin was also isolated.

Screening tests for chlamydia, gonorrhoea, and trichomonas were negative. A 10 day course of mupirocin 2% ointment completely resolved his symptoms.

Subpreputial swab after treatment was negative.

MRSA has been a well recognised cause of hospital acquired infections worldwide since it was first detected in Europe in the 1960s.3 The organism can survive for long periods in both the hospital and the home environment and can colonise the skin, nose, or throat of patients and healthcare staff. Several reports have suggested that diabetic patients are more susceptible to Staphylococcus aureus bacteremia4 MRSA has been isolated from different sites in diabetic patients but not the genitalia.5 MRSA rarely invades intact skin; however, it can give rise to severe infections—for example, wound infection, bacteremia, endocarditis, and osteomyelitis.6 This case illustrates the fact that MRSA is an organism to consider in patients who develop balanoposthitis while in hospital or shortly after discharge especially those whose immune system is incompetent.

There may be implications of spread of MRSA in the community for sexual contacts of patients carrying MRSA in the genital area.

Contributors: Both authors managed the patient and wrote the manuscript.

E HERIEKA
P FISK
Department of GUM, Leicester Royal Infirmary, Leicester LE1 5WW, UK

Correspondence to: Dr E Herieka
bherieka@uhl.trc.trent.nhs.uk

Chlamydia trachomatis reinfec-
tion rate: a forgotten aspect of female genital chlamydia management

EDITOR,—Hillis et al7 reported that repeated episodes of infection of female genital tract with Chlamydia trachomatis increase the risk of hospital admission for pelvic inflammatory disease and ectopic pregnancy. The first diagnosed attack of genital infection with chlamydia presents the clinician with a unique opportunity to implement measures to minimise the risk of reinfection—that is, health promotion and contact tracing.

During April–June 1998 we reviewed the case notes of female patients who were diagnosed with genital chlamydia at Leicester Royal Infirmary and Derbyshire Royal Infirmary GUM clinics in the year 1996 for evidence of repeat episode of genital chlamydia. We also noted the following data: age for presentation with the first episode of infection, time for presentation with reinfection, test of cure if performed, co-infection with gonorrhoea, review by health adviser, contact(s) traced and treated in the first 3 months after diagnosis. For the purpose of the study we defined reinfection as a patient testing positive for genital chlamydia 30 days or more after the completion of treatment. We also looked at the genital chlamydia treatment protocols in both clinics.

A total of 540 female patients were diagnosed with chlamydia (311 at Leicester and 229 at Derby). The patients’ mean age at first episode was 22.6 years for Leicester and 21.4 years for Derby. The health advisers had made contact with 94.5% (294) in Leicester and 97.8% (224) in Derby; 85.2% (265) of the patients diagnosed at Leicester returned at 30 days or more and were retested for chlamydia compared with 87.3% (200) at Derby; 9% (24) episodes of repeat infection were identified in Leicester group compared to 17% (34) episodes in the Derby cohort. The mean period for presentation with reinfection was 9.4 months (range 3–25) at Leicester and 9.8 months (range 2–24) at Derby. At Leicester the contacts of 66.5% (207) patients were traced and treated compared to 64.6% (148) at Derby. A test of cure was performed on 282 patient in Leicester (where it was routine practice); 2.5% (seven) were found to be positive for chlamydial infection, while the test of cure was performed on 22 patients in Derby (where it was performed selectively) revealed no positive cases.

Of the reininfected patients 58.3% (14) at Leicester were reinfected because of failure to trace and treat their partner(s) compared to 35.5% (12) at the Derby clinic.

Both clinics manage genital chlamydia with what was considered standard treatment and perform contact tracing wherever possible. Two reinfected patients from each clinic were also co-infected with gonorrhoea.

Other risk factors for reinfection—for example, ethnic origin, number of sexual partners,7 were not analysed as these data was not discernible from the notes.

This retrospective study highlights the fact that a substantial number of patients get reinfected with chlamydia despite health education and counselling by health advisers. Though the figures (66.5% and 64.6%) for partner notification and treatment were close to that proposed by the Central Audit Group (70%),7 the proportion of those reinfected was still too high. Does the message that repeat episodes of genital chlamydia are more damaging get through to our patients or do we need a new health education strategy? Currently, as the success of management of genital chlamydia is evaluated by the level of contact tracing, the number of patients referred to health advisers, and number of contacts per index patient seen and treated,2,7 we believe it is time to evaluate outcome measures in terms of reinfection rates. Large prospective studies need to be done to elucidate this aspect of chlamydial infection management.

Contributions: PS had the original idea; EH collected and analysed the data EH and JD wrote the manuscript.

E HERIEKA
P SCHOFER
J DHAR
Department of GUM, Leicester University Hospitals
Correspondence to: E Herieka, Department of GUM, Leicester Royal Infirmary, LE1 5WW, UK
bherieka@uhl.trc.trent.nhs.uk

The Society of Apothecaries Diploma examination in Genitourinary Medicine: death of the viva voce?

EDITOR,—The London Apothecaries Diploma in Genitourinary Medicine is likely to become even more important in the near future as all specialist registrars and probably...
many non-consultant grades will be expected to pass it as part of higher training in the specialty in the United Kingdom. It would be interesting to have some figures on the number of candidates anticipated in the near future and how this will affect the examination mechanism.

The Apothecaries’ Diploma Board rejected viva voce examinations some time ago as being prone to bias. This is consistent with much current research on examination techniques. Oral examinations are regarded as being inherently biased and of poor inter-examiner reliability. How much, however, is this also a candidate number related phenomenon? With courses for small numbers, such as the Diploma in Venerology and Genito-urinary Medicine of Liverpool University, we find the viva a key mechanism to discriminate between candidates precisely because the examiner can adjust the level of difficulty of questions to the ability of each candidate. The viva is a good instrument to measure clinical thinking, ability to take a sexual history, and counselling. Role play need not be unique to the province of actors. The viva is particularly useful for borderline candidates—for example, those who are disadvantaged in essays which are notoriously dependent on proficiency in English (not to mention scripting)!

In order to increase interexaminer variation inherent in the viva, all candidates for the Liverpool Diploma are viva’d independently by both sets of (two) examiners. Clearly, this would be extremely cumbersome and time consuming for the current and anticipated numbers taking the Apothecaries Diploma.

The venerable Apothecaries’ Hall is apparently “unsuitable” for projecting slides a convenient way of basing a clinical skills/data interpretation type examination for a large number of candidates—for example, MRCP Part 2 and many other postgraduate medical examinations. Will the examiners of the Apothecaries Diploma have to begin to think of more appropriate premises for their examination?

HUMPHREY BIRLEY
Department of GUM Royal Liverpool University Hospital, Liverpool L7 8XP UK

1 Eisai A, May C. Oral exams—get them right or don’t bother. BJFH 2000;302:375.

Detecting of chlamydia on meatal swabs

EDITOR—The advent of ligase chain reaction (LCR) and other DNA technologies and techniques is making current research on examination techniques available, particularly if testing populations with a high prevalence of chlamydia infection. It would be interesting to have some figures on the number of candidates anticipated in the near future and how this will affect the examination mechanism.

The Apothecaries Diploma Board rejected viva voce examinations some time ago as being prone to bias. This is consistent with much current research on examination techniques. Oral examinations are regarded as being inherently biased and of poor inter-examiner reliability. How much, however, is this also a candidate number related phenomenon? With courses for small numbers, such as the Diploma in Venerology and Genito-urinary Medicine of Liverpool University, we find the viva a key mechanism to discriminate between candidates precisely because the examiner can adjust the level of difficulty of questions to the ability of each candidate. The viva is a good instrument to measure clinical thinking, ability to take a sexual history, and counselling. Role play need not be unique to the province of actors. The viva is particularly useful for borderline candidates—for example, those who are disadvantaged in essays which are notoriously dependent on proficiency in English (not to mention scripting)!

In order to increase interexaminer variation inherent in the viva, all candidates for the Liverpool Diploma are viva’d independently by both sets of (two) examiners. Clearly, this would be extremely cumbersome and time consuming for the current and anticipated numbers taking the Apothecaries Diploma.

The venerable Apothecaries’ Hall is apparently “unsuitable” for projecting slides a convenient way of basing a clinical skills/data interpretation type examination for a large number of candidates—for example, MRCP Part 2 and many other postgraduate medical examinations. Will the examiners of the Apothecaries Diploma have to begin to think of more appropriate premises for their examination?

HUMPHREY BIRLEY
Department of GUM Royal Liverpool University Hospital, Liverpool L7 8XP UK

1 Eisai A, May C. Oral exams—get them right or don’t bother. BJFH 2000;302:375.

Detection of chlamydia on meatal swabs

EDITOR—The advent of ligase chain reaction (LCR) and other DNA technologies and techniques is making current research on examination techniques available, particularly if testing populations with a high prevalence of chlamydia infection. It would be interesting to have some figures on the number of candidates anticipated in the near future and how this will affect the examination mechanism.

The Apothecaries Diploma Board rejected viva voce examinations some time ago as being prone to bias. This is consistent with much current research on examination techniques. Oral examinations are regarded as being inherently biased and of poor inter-examiner reliability. How much, however, is this also a candidate number related phenomenon? With courses for small numbers, such as the Diploma in Venerology and Genito-urinary Medicine of Liverpool University, we find the viva a key mechanism to discriminate between candidates precisely because the examiner can adjust the level of difficulty of questions to the ability of each candidate. The viva is a good instrument to measure clinical thinking, ability to take a sexual history, and counselling. Role play need not be unique to the province of actors. The viva is particularly useful for borderline candidates—for example, those who are disadvantaged in essays which are notoriously dependent on proficiency in English (not to mention scripting)!

In order to increase interexaminer variation inherent in the viva, all candidates for the Liverpool Diploma are viva’d independently by both sets of (two) examiners. Clearly, this would be extremely cumbersome and time consuming for the current and anticipated numbers taking the Apothecaries Diploma.

The venerable Apothecaries’ Hall is apparently “unsuitable” for projecting slides a convenient way of basing a clinical skills/data interpretation type examination for a large number of candidates—for example, MRCP Part 2 and many other postgraduate medical examinations. Will the examiners of the Apothecaries Diploma have to begin to think of more appropriate premises for their examination?

HUMPHREY BIRLEY
Department of GUM Royal Liverpool University Hospital, Liverpool L7 8XP UK

1 Eisai A, May C. Oral exams—get them right or don’t bother. BJFH 2000;302:375.
Men reporting UAI with a partner of unknown or discordant HIV status. Non-concordant UAI was more likely to report concordant UAI with a casual partner. HIV prevention programmes need to reinforce risk reduction strategies, tailored to a person’s HIV status, while simultaneously addressing high risk sexual behaviour.

JONATHAN ELFORD
GRAHAM BOLDING
Department of Primary Care and Population Sciences and Royal Free Centre for HIV Medicine, Royal Free and University College Medical School, University College London, London, UK

MARK MAGUIRE
Camden and Islington Community Health Services NHS Trust, London, UK

LORRAINE SHERR
Department of Primary Care and Population Sciences and Royal Free Centre for HIV Medicine, Royal Free and University College Medical School, University College London, London, UK

Correspondence to: Dr Jonathan Elford, Department of Primary Care and Population Sciences, Royal Free and University College Medical School, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2QQ, UK

A mobile phone text message and Trichomonas vaginalis

EDITOR,—Over the past decade vast numbers of the general population have accepted the internet, email, and mobile phones. Among new patients attending our centre 70.3% (90/128) of men and 73.7% (90/123) of women provide mobile telephone numbers for contact. However, the use of mobile phones as a mechanism for contact tracing as far as I am aware has not been reported previously.

A 26 year old African-Caribbean man presented to our clinic and informed us that his girlfriend had attended a GUM clinic but unfortunately he did not know why. However, he informed us that he had a text message on his mobile. He duly brought up the message, which gave the woman’s clinic number and the KC60 diagnosis of C6A.

On examination there were no abnormalities seen, there were no polymorphs on microscopy, swabs for gonorrhoea, chlamydia, and trichomonas were all clear. He was treated with a 5 day course of metronidazole as per MSSVD guidelines.

If this patient had turned up without a contact slip, epidemiological treatment of trichomons is unlikely to be co-ordinated and contact tracing would have been impossible. Thanks to the use of text messaging on this man’s mobile phone, appropriate treatment was initiated. Certainly patients and health advisers appreciate the security offered by mobile phones (no other family members can take the calls), the instant access, and it avoids additional paper work. The use of text messaging and mobile phones for contact tracing may be considered as an adjunct to contact slips in GU clinics.

Chaperoning male patients

EDITOR—It was delightful to see the letter by Pink et al in the journal. My staff and I were becoming alarmed at the suggestion that male patients should have a chaperone when they are being examined by a male doctor.

Was common sense finally leaving the specialty? There are thousands of consultations taking place throughout the country, in both primary and secondary care, where sexual issues are discussed. These often include a genital examination, and just because there is a problem found with one or two individual patients or doctors it doesn’t mean the whole national service has to be turned upside down. Surely, the last thing an overworked, under pressure, genitourinary medicine service needs is to have another section of its skilled staff standing idly by in a room, while either a consultation or examination is taking place. I have never found any difficulty in taking the swabs on my own, and labelling the stuff myself, and have never felt the need for another person handing me things during a male examination. Indeed, I could easily see that interfering with the process at times, as there are some issues patients feel more comfortable discussing on a one to one basis, and they can feel embarrassed and hindered if there is a chaperone present.

An occasional complaint is a small price to pay for the 99.9% otherwise effective consultations that occur. It’s lovely to see work like this being published, as it is a part of the evidence base that says we don’t need this
kind of interference, and that basic common sense should prevail.

COLM O’MAHONY
Department of Genito-Urinary Medicine,
Counties of Chester Hospital, Liverpool Road,
Chester CH2 1UL, UK

Accepted for publication 15 February 2001

Lichen sclerosus of the glans is significantly associated with penile carcinoma

EDITOR,—We read with interest the article by Riddel et al on 66 men with penile lichen sclerosus (PLS) attending a department of genitourinary medicine.1 In this study, the authors found no cases of malignancy. We have previously reported a retrospective study on the incidence of cancer on 86 cases of PLS retrieved from our histopathological files over a 10 year period (1987–97).2 In that study, five cases showed malignant transformation—namely, squamous cell carcinoma (SCC) (three cases), in situ carcinoma (one case), and verrucous carcinoma (one case).

Since that report, we decided to interview all PLS patients in order to rule out any further malignancy that occurred over time. Of 86 patients identified, 60 were evaluated at our clinic. Among these, we found three additional patients treated with partial penectomy for invasive SCC at other institutions. Their medical records were obtained together with paraffin embedded tissue samples to perform polymerase chain reaction (PCR) for human papillomavirus (HPV) testing. Clinical and laboratory information for these patients, together with previously reported cases, are summarised in table 1.

In this current study, eight (9.3%) out of 86 patients with PLS developed an epithelial cancer. Data analysis using the t test confirmed in our series a statistically significant risk of malignant degeneration (p <0.05). Clinically, the most common presentation of epithelial cancer arising with PLS was that of an infiltrated or ulcerated plaque followed, in decreasing order of frequency, by a nodular lesion or verrucous papules. The glans was the most commonly affected area.

The average age of onset of PLS was 45 years, and that of development of cancer was 62 years. The average lag time from onset of PLS to cancer development was 18 years (range 10–34 years). This long latency time might explain the paucity of cases, mostly anecdotal, reported in the literature in the past 2 years (approximately 20)2,3 compared with our study, in which a long follow up disclosed 9.3% malignant degeneration in a series of 86 patients.

Also, the latency time was shorter in the HPV positive patients (average 15 years) compared with the HPV negative patients (average 23 years). The role of HPV in the pathogenesis of penile cancer is not fully understood. Some HPVs, such as type 16 and 18, are likely to play a part, but not all penile carcinomas are HPV positive, as shown in our study. Also, PLS is not commonly associated with HPV infection.1 In our study we found five patients positive for HPV 16 infection, and this may have hastened the progression towards cancer resulting in a shorter lag time. However, routine HPV testing on larger series is necessary in order to draw any definitive conclusion.

Similarly to vulvar lichen sclerosus, which has been observed to undergo malignant degeneration in 3–6% of women,2 a likely malignant evolution of PLS should be considered. Careful and systematic histopathological evaluation of any ulcerated or indurated plaques developing within PLS is therefore strongly recommended. The association between PLS and cancer may very well be underestimated and there is a need for further investigation that includes long term follow up and routine PCR analysis for HPV infection.

GIUSEPPE MICALI
MARIA RITA NASCA
Dermatology Clinic, University of Catania, Italy
DANIELE INNOCENZI
Dermatology Clinic, University “La Sapienza,” Rome, Italy

Correspondence to: Giuseppe Micali, MD, Clinica Dermatologica, Università di Catania, Piazza S Agata La Vetere, 6, 95124 - Catania, Italy
cilerme@dimtel.nti.it

Table 1 Clinical and histopathological features of eight cases of carcinoma on penile lichen sclerosus

<table>
<thead>
<tr>
<th>Patient No</th>
<th>Age of onset of PLS (years)</th>
<th>Age of onset of Ca (years)</th>
<th>Lag (years)</th>
<th>Site</th>
<th>Clinical aspect of malignancy on PLS</th>
<th>Histopathology</th>
<th>PCR testing for HPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td>41</td>
<td>62</td>
<td>21</td>
<td>glans</td>
<td>fungating keratotic nodule with a</td>
<td>SCC</td>
<td>negative</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white-yellowish hue slightly</td>
<td>SCC,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>elevated verrucous papules</td>
<td>well</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>multiple erythematous, indurated,</td>
<td>differentiated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and ulcerated plaques</td>
<td>SCC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sharply circumscribed, erythematous,</td>
<td>well</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>oozing, and slightly infiltrated</td>
<td>differentiated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>plaque</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2*</td>
<td>36</td>
<td>59</td>
<td>23</td>
<td>glans</td>
<td>exophytic verrucous whitish node</td>
<td>SCC</td>
<td>negative</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sharply circumscribed, erythematous,</td>
<td>differentiated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>and ulcerated plaque</td>
<td>SCC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sharply circumscribed, erythematous,</td>
<td>well</td>
<td>HPV 16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>eroded, and indurated plaque</td>
<td>differentiated</td>
<td>HPV 16</td>
</tr>
<tr>
<td>3*</td>
<td>41</td>
<td>55</td>
<td>14</td>
<td>glans</td>
<td>coronary sulcus</td>
<td>SCC</td>
<td>negative</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>coronary sulcus</td>
<td>SCC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>eroded, and indurated plaque</td>
<td>well</td>
<td></td>
</tr>
<tr>
<td>4*</td>
<td>39</td>
<td>49</td>
<td>10</td>
<td>glans</td>
<td>sharply circumscribed, erythematous,</td>
<td>SCC</td>
<td>negative</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>oozing, and slightly infiltrated</td>
<td>differentiated</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>plaque</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5*</td>
<td>29</td>
<td>47</td>
<td>18</td>
<td>glans</td>
<td>exophytic verrucous whitish node</td>
<td>SCC</td>
<td>negative</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sharply circumscribed, erythematous,</td>
<td>SCC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>eroded, and indurated plaque</td>
<td>SCC</td>
<td>HPV 16</td>
</tr>
<tr>
<td>6</td>
<td>75</td>
<td>85</td>
<td>10</td>
<td>glans</td>
<td>sharply circumscribed, erythematous,</td>
<td>SCC</td>
<td>HPV 16</td>
</tr>
<tr>
<td>7</td>
<td>66</td>
<td>70</td>
<td>15</td>
<td>glans</td>
<td>sharply circumscribed, erythematous,</td>
<td>SCC</td>
<td>HPV 16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>eroded, and indurated plaque</td>
<td>SCC</td>
<td>HPV 16</td>
</tr>
<tr>
<td>8</td>
<td>33</td>
<td>67</td>
<td>34</td>
<td>glans</td>
<td>sharply circumscribed, erythematous,</td>
<td>SCC</td>
<td>negative</td>
</tr>
</tbody>
</table>

*Previously reported cases.1

PLS = penile lichen sclerosus; Ca = carcinoma; PCR = polymerase chain reaction; HPV = human papillomavirus; SCC = squamous cell carcinoma; VC = verrucous carcinoma.

Accepted for publication 22 March 2001

Third trimester screening or safer sex to prevent mother to child transmission of HIV

EDITOR,—Since 1992 Department of Health guidelines have recommended that HIV screening be offered to all pregnant women in high seroprevalence areas and that the test should be offered and recommended to all pregnant women in high seroprevalence areas.1 In 1999 the Department of Health extended these recommendations to all regions aiming to reduce neonatal HIV infection by 80% by 2002.2 We present the case of an infant with symptomatic HIV infection, whose mother’s antenatal HIV test was negative and discuss the implications.

A 3 month old female, born at term by spontaneous vaginal delivery and breastfed, presented with a 1 week history of increasing respiratory difficulty. Following further deterioration, she was transferred to St Mary’s Hospital and ventilated. Pneumocystis carinii pneumonia (PCP) was diagnosed on bronchoalveolar lavage. Anti-HIV antibodies were present in serum and HIV infection was confirmed by the detection of HIV-DNA in peripheral blood mononuclear cells (PBMC) by PCR amplification. HIV-1 infection was confirmed in both parents. Her asymptomatic mother had received antenatal care from the 12th week of gestation and was HIV seronegative at 29 weeks. To investigate a
possible false negative result, other sera stored at various times were retrieved and tested. The results, which show seroconversion late in pregnancy, are summarised in table 1.

The HIV antibody test is usually performed at the booking visit with other routine antenatal screens. This allows the parents time to adjust to the diagnosis before delivery, to consider family planning issues and interventions to minimise the risk of mother to child transmission. In addition, mothers with advanced immunosuppression benefit from antiretroviral therapy.

Although rarely reported, an HIV seronegative mother whose partner has undiagnosed HIV infection is at continued risk of infection. This may become more common in the future as heterosexual intercourse is now the most common risk for HIV infection. This may become more common in the United Kingdom as heterosexual intercourse is recommended for syphilis in the antenatal test serum, which is not available for repeat retrospective testing.

<table>
<thead>
<tr>
<th>Time (in weeks of gestation)</th>
<th>1 T = 12 weeks (“Booking blood”)</th>
<th>2 T = 29 weeks</th>
<th>3 T = 33 weeks (“Booking blood”)</th>
<th>4 T = 13 weeks post partum (child presents)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital where blood taken</td>
<td>Blood was stored and retrospectively tested</td>
<td>Index antenatal test (serum not available for repeat retrospective testing)</td>
<td>Blood was stored and retrospectively tested</td>
<td>St Mary's Postnatal test. Blood stored</td>
</tr>
<tr>
<td>HIV antibody screening tests</td>
<td>Clear negative</td>
<td>Weak positive</td>
<td>Clear negative</td>
<td>Strong positive</td>
</tr>
<tr>
<td>i Detect-HIV<sup>6</sup></td>
<td>Abbott Assay HIV 1/2 (OD<sub>1/2</sub> 1999=0.42)</td>
<td>OD<sub>=0.938</sub>, CO=0.252</td>
<td>OD<sub>=0.486</sub>, CO=0.839</td>
<td>OD<sub>=0.062</sub>, CO=0.532</td>
</tr>
<tr>
<td>ii Wellcome HIV Recombinant<sup>6</sup></td>
<td>OD<sub>=0.179</sub>, CO=0.696</td>
<td>OD<sub>=0.179</sub>, CO=0.696</td>
<td>Serodia HIV-1/2: HIV 1/1:256, HIV 2: <1/32</td>
<td>Serodia HIV-1/2: HIV 1/1:256, HIV 2: <1/32</td>
</tr>
<tr>
<td>iii Detect-HIV<sup>6</sup></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>HIV specific antibody tests</td>
<td>Clear negatives, (OD/CO) HIV IgG=4.93, IgM=0.45</td>
<td>Strong positives, (OD/CO) HIV IgG=12.34, IgM=10.94, IgA=5.28</td>
<td>Strong positives for IgG and IgA: weak positive IgM (OD/CO) HIV IgG=15.41, IgM=3.14, IgA=4.18</td>
<td>Strong positives for IgG and IgA: weak positive IgM (OD/CO) HIV IgG=15.41, IgM=3.14, IgA=4.18</td>
</tr>
<tr>
<td>(CPHL in-house EIAs)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>HIV western blot<sup>7</sup></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>HIV RNA (copies/ml)</td>
<td>Not detected (< Limit of detection) Cobas Amplicor HIV-1 Monitor v1.5<sup>5</sup></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

⁶Enzyme immunoassay (EIA) for detection of antibody to HIV-1 and 2. Biochem Immunosystems Inc, Montreal, Quebec, Canada.

⁷EIAs for detection of antibodies to HIV-1 and 2. Abbott Laboratories, IL, USA.

⁵For definitive diagnosis of HIV infection in pregnant women is appealing as both mater

¹Accepted for publication 3 April 2001.
were tested; 23/148 (16%) swabs from male

Figure 1 Chlamydia detection by diagnostic test. LCR = ligase chain reaction; EIA = enzyme immunosassay.

A total of 148 male and 153 female patients were tested; 23/148 (16%) swabs from male patients were positive for Chlamydia trachomatis by LCR (see fig 1).

The sensitivity, specificity, and positive predictive values, and cost/test of LCR and EIA, respectively, were 100%, 100%, 100%, 100%, £6.44 and 58%, 100%, 95%, 100%, £4.05.

Of 33 cases of chlamydial infection, 15 cases (12 (92.2%) in men and two (20.0%) in women) would have remained undetected if EIA had been used alone.

Although EIA tests cost less than LCR, the inferior detection rate for EIA (17 patients screened per case detected) compared with LCR (nine patients screened per case detected) was also included in analysis of the results. The cost per case of chlamydial infection detected using EIA in this population was £6.65, compared with £5.50 for LCR.

In a hypothetical cohort of 100 GUM attendees, with an 11% prevalence of chlamydial infection (as in the present study), testing with EIA would cost £105 and would detect 6.4% of the 11 cases. Testing the cohort with LCR would cost £564 and detect all 11 cases.

The additional cost of LCR is thus £159. The additional benefit is 4.6 additional cases detected. The additional cost of LCR per additional case detected is £34.

In summary, this study demonstrates that testing positive by LCR alone were retested by an alternative PCR assay for DNA sequences coding for the major outer membrane protein (MOMP) of Chlamydia trachomatis.

In a one year period, at an estimated cost of £82 000. A full economic evaluation in a hypothetical cohort of 100 GUM attendees, with an 11% prevalence of chlamydial infection (as in the present study), testing the cohort with EIA would have been missed.

Had EIA been used alone, 276 cases of chlamydial infection would have been missed in a one year period, at an estimated cost of over £82 000. A full economic evaluation would require that these long term health and resource costs be more thoroughly quantified and compared with other uses of NHS resources.

In summary, this study demonstrates that the overall sensitivity of LCR was double that of EIA, the previous standard diagnostic test used. Because of its improved sensitivity and increased case detection rate, the cost of LCR per case detected is equivalent to that of EIA in an urban UK GUM clinic population. Use of LCR as the diagnostic test of choice for both screening and clinical diagnosis in this setting thus represents a cost effective strategy.

NOTES

International Herpes Alliance and International Herpes Management Forum

The International Herpes Alliance has introduced a website (www.hersesalliance.org) from which can be downloaded patient information leaflets. Its sister organisation, the International Herpes Management Forum (website: www.IHMFM.org) has launched new guidelines on the management of herpesvirus infections in pregnancy at the 9th International Congress on Infectious Disease (ICID) in Buenos Aires.

Pan-American Health Organization, regional office of the World Health Organization

A catalogue of publications is available online (www.paho.org). The monthly journal of PAHO, the Pan American Journal of Public Health, is also available (subscriptions: pubsvc@tsp.sheridan.com).

Further details: ECEAR 2001 Conference Secretary, Division of Microvirology, NBSC, Bianche Lane, South Mimms, Potters Bar, Herts, EN6 3QG, UK.

International Congress of Sexually Transmitted Infections, 24–27 June 2001, Berlin, Germany

Further details: Congress Partner GmbH, Krausenstrasse 63, D-10117, Berlin, Germany (tel: +49-30-204 500 41; fax: +49-30-204 500 42; email: berlin@cpb.de).

1st Asia Pacific Forum on Quality Improvement in Health Care

The 1st Asia Pacific Forum on Quality Improvement in Health Care will be held from 19–23 September 2001 in Sydney, Australia. Presented by the BMJ Publishing Group (London, UK) and Institute for Healthcare Improvement (Boston, USA), with the support of the Commonwealth Department of Health and Aged Care (Australia), Safety and Quality Council (Australia), NSW Health (Australia) and Ministry of Health (New Zealand). Further details: quality@bma.org.uk; fax +44 (0) 7383 8689.

41st St Andrew’s Day Festival Symposium on Therapeutics

The 41st St Andrew’s Day Festival Symposium on Therapeutics will be held on 6–7 December 2001 at the Royal College of Physicians of Edinburgh. Further details: Ms Eileen Srawn, Symposium Co-ordinator (tel: 0131 225 7324; fax: 0131 220 4393; email: e.srawn@rcpe.ac.uk; website: www.rcpe.ac.uk).

10th International Congress on Behcet’s Disease will be held in Berlin 27–29 June 2002

Further details: Professor Ch Zouboulis (email: zoubbere@zedat.fu-berlin.de).

5th World Congress of Perinatal Medicine, 23–27 September 2001, Palau de Congressos de Barcelona - Avda Maria Cristina s/n, Barcelona, Spain

Further details: Dr Francesc Figueras, Congress Promotion Secretary (fax: +34 93 451 74 38; www.perinat2001.com).

Second International Conference on Sexual Health, to be held in Bangkok, Thailand on 23–28 February 2002. Calls for abstracts deadline 1 September 2001

Further details: European Secretariat, Dr Richard Burack (tel: +44 (0) 20 8599 8029; email: siamcare@aol.com).

International Conference on HIV/AIDS 16–19 December 2001, Mumbai, India

Further details: Dr Chander P Puri, President, Indian Society for Study of Reproduction and Fertility, Institute for Reserach in Reproduction, Jehangir Merwanji Street, Parel, Mumbai 400012, India (Tel: 4137730 (Direct), 4132111-2-6-7; fax: 091-022-4964853 or 091-022-4139412; e-mail: vichin@bom4.vsnl.net.in OR dirirr@vsnl.com).

10th International Symposium on Human Chlamydial Infection, 16–21 June 2002, in Antalya, Turkey

The scientific programme will encompass the breadth of chlamydial research from clinical and epidemiological studies to molecular and cell biology of all species of Chlamydia. Further details: Professor A Demir Serter, Department of Clinical Microbiology and Infectious Diseases, Ege University, Faculty of Medicine, 35100 Bornova, Izmir, Turkey (Fax: 90 232 343 71 30; e-mail: ISHCICX@jtsa.ucsf.edu).

20th World Congress of Dermatology, Paris, 1–5 July 2002

Further details: P Fournier, Colloquium, 12 rue de la Croix St Faubin, 75011 Paris, France (Tel: +33 1 44 64 15 15; fax: +33 1 44 64 15 16; email: p.fournier@colloumum.fr website: www.derm-wcd-2002.com).