NOTICE OF REDUNDANCY

The hanging committee of Sexually Transmitted Infections wishes to announce that two published papers by van Valkengoed et al. exhibited a degree of overlap. Specifically, the female patients are the same in both papers. They are indistinguishable from the point of population size (5714), age (15–40), setting, participation rate (51%), chlamydia prevalence rate (2.8%; CI 2.1–3.4%), and the number of women excluded because of never having been sexually active (125). There is also a certain degree of overlap between the two papers in the introduction, methods, results, and discussion sections.


Reply

We strongly disagree with your conclusion that we are guilty of duplicate publication. The objectives, analyses, and results presented in the two papers in Sexually Transmitted Infections (paper 1) and Sexually Transmitted Infections (paper 2) are completely different and do not resemble each other at all. The aim of paper 1 was to determine the value of currently published screening criteria for asymptomatic populations as selection criteria for the general population. A literature review was performed to identify criteria for women. Criteria for men were not available. These criteria were then applied to the female participants in the Amsterdam Screening Study. The diagnostic accuracy of these criteria was then found to be poor. That led to the second research question, which was addressed in paper 2. Could similar new criteria for selective screening of females and males be derived from our own study population? In paper 2 we report on the development of this new set of selective screening criteria and their diagnostic accuracy. In addition, detailed prevalence data and the results for both men and women non-respondents in the Amsterdam Screening Study were presented.

The papers did not contain references to each other. This was not through intent, but because of the simultaneous process of submission for publication. At the time of submission, there was simply no other “paper” to refer to. When checking the proofs of the papers we should have added “in press” to the references, which we neglected to do. We sincerely apologise for this and will remember to do so in future.

In summary, we believe your verdict of duplicate publication to be unjust and your sanction to be too harsh for the omission of cross references.

A JOAN P BOEKE
IRENE G M VAN VALKENGEO
SERVAAS A MORRE

Table 1 Comparison of ELISA and WHIF tests showing the Chlamydia trachomatis IgG antibody titre distribution

<table>
<thead>
<tr>
<th>WHIF test</th>
<th>Commercial ELISA</th>
<th>In-house ELISA</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥512</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>256</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>128</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>64</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>≤64</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Eq = equivocal.

pathogen and in a recent study of 34 women positive for C trachomatis IgG (≥1:128) by ELISA, at laparoscopy 31 (91.2%) were diagnosed as having tubal disease. It is likely that significant damage could be occurring in these patients as a previous study looking at high C trachomatis IgG titres showed 46% positive and 8% positive in infertile women with damaged and normal tubes, respectively.

Although these findings are based on relatively small numbers, they are of significant concern if combined with the other most recent study. It would appear that the prevalence rates for C trachomatis may well be high and that data presented here suggest possible future PID development and resultant sequelae. It is clear that further studies are warranted and that screening and treatment strategies may be required urgently to curtail considerable morbidity in Trinidad and throughout the West Indies in general.

Financial support was provided by the University of Sheffield and Bristol Public Health Laboratory.

A ELIY
H H W RING
I GEARY
Division of Genomic Medicine, University of Sheffield Medical School, Sheffield S10 2RX, UK

S S RAMSEWAK
Department of Clinical Surgical Sciences, The University of the West Indies, St Augustine, Trinidad

A HERRING
E O CAUL
Genito-Urinary Infections Reference Laboratory, Bristol Public Health Laboratory, Bristol BS8 2EL, UK

Correspondence to: Dr A Eley, Division of Genomic Medicine, Floor F, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK
a.eley@sheffield.ac.uk

Implications of random measurement error in studies adjusting for sexual behaviours

Editor,—In their recent review of methodological issues in sexual behaviour research, Fenton et al provide a comprehensive overview of the major types of sexual behaviour research, the sources of measurement error which may affect such research, and different approaches to measuring various forms of measurement error. We would like to provide an important footnote on the implications of the poor measurement of sexual behaviour for drawing inferences from studies of sexually transmitted infections (STIs) which attempt to adjust for sexual behaviours in their analyses.

The role of systematic measurement errors in study design and analysis, as described by Fenton et al, is widely recognised. Given their impact on inferences of association, great care is taken in most studies to avoid these biases. The effects of random measurement error are non-differential misclassification on epidemiological inference typically receive less attention. Most researchers realise that non-differential misclassification of exposure and outcome measures will lead to an attenuation of the resulting measure of association. However, the fact that random measurement error in potential confounding variables may also affect the inferences which are made from study results is seldom acknowledged. The non-differential misclassification of a dichotomous confounding variable may lead to inadequate statistical adjustment (often referred to as residual confounding) and the false appearance of statistical interaction when none is present.

When confounders are measured as polytomous or continuous variables (for example, condom use never/sometimes/always or number of sexual partners), random measurement error can bias the adjusted measure of association unpredicably—in some instances making the adjusted measure of association less accurate than the crude.

These forms of misclassification are generally of greatest concern when the true exposure-disease association is relatively weak compared with the exposure-confounder and outcome-confounder relation, as is the case in most research around STIs. Even small random errors can have major effects on adjusted measures of association, and the unpredictability of the effects of random measurement error may be compounded in multivariate analyses.

With this in mind, Fenton et al's review of the difficulties involved in the accurate measurement of sexual behaviour has powerful implications for studies attempting to control for covariates associated with risk for STIs. Studies which attempt to adjust during statistical analysis for numbers and types of sexual partners, frequency of sexual contacts, or condom use practices, are likely to encounter some degree of random measurement error. Although perhaps not differential with respect to exposure or outcome, this mismeasurement may lead to unpredictable biases and/or mis-specified analyses, and in turn, spurious inferences.

In summary, the random measurement of sexual behaviour requires special consideration in any study attempting to adjust for the confounding role of sexual behaviours in associations involving STIs. We hope that Fenton et al's review of the challenges posed by the collection of sexual behaviour data helps to draw attention to this frequently overlooked methodological aspect of the epidemiology of STIs.

Landon Myers
HIV Prevention and Vaccine Research, South African Medical Research Council, PO Box 658, Hluhluwe 3937, South Africa

CHELSEA MORRONI
Women's Health Research Unit, Department of Public Health, University of Cape Town, South Africa

Correspondence to: Landon Myers, Fogarty-ATRPP, Division of Epidemiology, School of Public Health, Columbia University, 630 West 168th Street, PH 18, New York, New York, 10032, USA
Landon.Myer@mic.ac.za or landon_myer@hotmail.com

whereas immune complex and membranous predominant renal lesion in black patients, whereas immune complex and membranous predominant renal lesion in black patients, whereas immune complex and membranous predominant renal lesion in black patients, whereas immune complex and membranous predominant renal lesion in black patients, whereas immune complex and membranous predominant renal lesion in black patients.

The patient was managed conservatively. HAART was commenced with efavirenz, didanosine, and stavudine and hypertension was treated with ramipril. After 8 weeks of HAART the CD4 count was 140 cells ×10^3/l and viral load was 47 500 copies/ml. Complement C3 was 0.56 (normal = 0.9–1.8) g/l, C4 was 0.07 (normal = 0.1–0.4) g/l. Immunoglobulin quantification showed normal IgA, IgG = 23.2 (normal = 7.0–16.0) mg/l and IgM = 4.4 (normal = 0.4–2.3) g/l. Hepatitis B serology showed HbeAg and HbAg (titre 1:3200). Urinalysis showed blood ++ and ++ protein. Urine protein = 5.8 g/24 hours and creatinine clearance = 66 ml/min. Ultrasound examination showed normal sized kidneys. Histology of a renal biopsy showed membranoproliferative glomerulonephritis. Staining showed massive deposits of hepatitis B core and surface antigens (fig 1).

The patient was managed conservatively. HAART was commenced with efavirenz, didanosine, and stavudine and hypertension was treated with ramipril. After 8 weeks of HAART the CD4 count was 140 cells ×10^3/l and viral load was 47 500 copies/ml. Complement C3 was 0.56 (normal = 0.9–1.8) g/l, C4 was 0.07 (normal = 0.1–0.4) g/l. Immunoglobulin quantification showed normal IgA, IgG = 23.2 (normal = 7.0–16.0) mg/l and IgM = 4.4 (normal = 0.4–2.3) g/l. Hepatitis B serology showed HbeAg and HbAg (titre 1:3200). Urinalysis showed blood ++ and ++ protein. Urine protein = 5.8 g/24 hours and creatinine clearance = 66 ml/min. Ultrasound examination showed normal sized kidneys. Histology of a renal biopsy showed membranoproliferative glomerulonephritis. Staining showed massive deposits of hepatitis B core and surface antigens (fig 1).

The patient was managed conservatively. HAART was commenced with efavirenz, didanosine, and stavudine and hypertension was treated with ramipril. After 8 weeks of HAART the CD4 count was 140 cells ×10^3/l and viral load was 47 500 copies/ml. Complement C3 was 0.56 (normal = 0.9–1.8) g/l, C4 was 0.07 (normal = 0.1–0.4) g/l. Immunoglobulin quantification showed normal IgA, IgG = 23.2 (normal = 7.0–16.0) mg/l and IgM = 4.4 (normal = 0.4–2.3) g/l. Hepatitis B serology showed HbeAg and HbAg (titre 1:3200). Urinalysis showed blood ++ and ++ protein. Urine protein = 5.8 g/24 hours and creatinine clearance = 66 ml/min. Ultrasound examination showed normal sized kidneys. Histology of a renal biopsy showed membranoproliferative glomerulonephritis. Staining showed massive deposits of hepatitis B core and surface antigens (fig 1).

The patient was managed conservatively. HAART was commenced with efavirenz, didanosine, and stavudine and hypertension was treated with ramipril. After 8 weeks of HAART the CD4 count was 140 cells ×10^3/l and viral load was 47 500 copies/ml. Complement C3 was 0.56 (normal = 0.9–1.8) g/l, C4 was 0.07 (normal = 0.1–0.4) g/l. Immunoglobulin quantification showed normal IgA, IgG = 23.2 (normal = 7.0–16.0) mg/l and IgM = 4.4 (normal = 0.4–2.3) g/l. Hepatitis B serology showed HbeAg and HbAg (titre 1:3200). Urinalysis showed blood ++ and ++ protein. Urine protein = 5.8 g/24 hours and creatinine clearance = 66 ml/min. Ultrasound examination showed normal sized kidneys. Histology of a renal biopsy showed membranoproliferative glomerulonephritis. Staining showed massive deposits of hepatitis B core and surface antigens (fig 1).

The patient was managed conservatively. HAART was commenced with efavirenz, didanosine, and stavudine and hypertension was treated with ramipril. After 8 weeks of HAART the CD4 count was 140 cells ×10^3/l and viral load was 47 500 copies/ml. Complement C3 was 0.56 (normal = 0.9–1.8) g/l, C4 was 0.07 (normal = 0.1–0.4) g/l. Immunoglobulin quantification showed normal IgA, IgG = 23.2 (normal = 7.0–16.0) mg/l and IgM = 4.4 (normal = 0.4–2.3) g/l. Hepatitis B serology showed HbeAg and HbAg (titre 1:3200). Urinalysis showed blood ++ and ++ protein. Urine protein = 5.8 g/24 hours and creatinine clearance = 66 ml/min. Ultrasound examination showed normal sized kidneys. Histology of a renal biopsy showed membranoproliferative glomerulonephritis. Staining showed massive deposits of hepatitis B core and surface antigens (fig 1).

The patient was managed conservatively. HAART was commenced with efavirenz, didanosine, and stavudine and hypertension was treated with ramipril. After 8 weeks of HAART the CD4 count was 140 cells ×10^3/l and viral load was 47 500 copies/ml. Complement C3 was 0.56 (normal = 0.9–1.8) g/l, C4 was 0.07 (normal = 0.1–0.4) g/l. Immunoglobulin quantification showed normal IgA, IgG = 23.2 (normal = 7.0–16.0) mg/l and IgM = 4.4 (normal = 0.4–2.3) g/l. Hepatitis B serology showed HbeAg and HbAg (titre 1:3200). Urinalysis showed blood ++ and ++ protein. Urine protein = 5.8 g/24 hours and creatinine clearance = 66 ml/min. Ultrasound examination showed normal sized kidneys. Histology of a renal biopsy showed membranoproliferative glomerulonephritis. Staining showed massive deposits of hepatitis B core and surface antigens (fig 1).

The patient was managed conservatively. HAART was commenced with efavirenz, didanosine, and stavudine and hypertension was treated with ramipril. After 8 weeks of HAART the CD4 count was 140 cells ×10^3/l and viral load was 47 500 copies/ml. Complement C3 was 0.56 (normal = 0.9–1.8) g/l, C4 was 0.07 (normal = 0.1–0.4) g/l. Immunoglobulin quantification showed normal IgA, IgG = 23.2 (normal = 7.0–16.0) mg/l and IgM = 4.4 (normal = 0.4–2.3) g/l. Hepatitis B serology showed HbeAg and HbAg (titre 1:3200). Urinalysis showed blood ++ and ++ protein. Urine protein = 5.8 g/24 hours and creatinine clearance = 66 ml/min. Ultrasound examination showed normal sized kidneys. Histology of a renal biopsy showed membranoproliferative glomerulonephritis. Staining showed massive deposits of hepatitis B core and surface antigens (fig 1).

Cervical cytology smears in sexually transmitted infection clinics in the United Kingdom

Figure 1 Renal histology shows glomerular mesangial expansion and thickening of the capillary walls, characteristic of membranoproliferative glomerulonephritis. The mesangial areas and capillary walls were positive for IgG, IgA, IgM, and complement components C3 and C1q. There was also positive staining for hepatitis B surface and core (inset) antigens. Haematoxylin and eosin ×400 and immunoperoxidase ×400 (inset).


BOOK REVIEW


This is a profound work describing the impact of venereal diseases and conventional morality in the build up to AIDS. It is written by an American, who has been personally affected by the impact of AIDS. He has written a book on topics in history, medicine, morality, and infectious diseases, which have had an impact on the public response to AIDS. Throughout, one senses the author's very real loss in what to him and many others have been tragic times.

It is interesting to see how different the general public moral climate is in different societies in the developed world. Thankfully, some forms of evangelism do not have the same influence everywhere.

Does the historical part of the book tell the medical historian anything new? The answer is yes. And that is the gap between what has been known on this subject to academics for a long time and what others are only finding out about now. The chapters containing information on the church's attitude to sexual morality, on leprosy, the early history of syphilis, bubonic plague, and masturbation illustrate the age old story of reactionary view against progress. It is difficult to judge the mores of the past through the views of the present.

It is a pity that the author seems to have given such prominence to those whose views resisted progress. Nothing is mentioned of liberal pioneers in venereal diseases from Van Swieten in the 18th century, through Ricord, Fournier in the next, Abraham Flexner (for the Rockefeller Foundation), Neisser, or indeed the enormous changes brought about by the Royal Commission on Venereal Diseases in Great Britain at the time of the first world war or such notable more recent Americans such as Kampmeier, Stokes, or Earl Moore.

The chapters on America are particularly interesting from a European point of view. Learning about reactionary views always helps in developing any strategy for public knowledge and education. Well educated AIDS lobbyists have certainly had an impact in Europe as in the United States and are neatly described in this work. The bibliography, 14 pages, is particularly good.

This is a book questioning responses and conventional morality in respect, sorrow, and anguish. It is worthy of merit. It enables the modern reader to learn about difficult aspects of morality in relation to venereal diseases and sexuality which have always had more impact on the public than the practising physician.

MICHAEL WAUGH
General Infirmary at Leeds, LS1 3EX
Mechanics for Africa—training school in Africa to bring health awareness into curriculum

Mechanics for Africa is a training school for motor mechanics in Zambia, giving young Africans skills for life. This charitable initiative was recently launched to help impoverished Africans break out of the persistent reliance on outside aid to help them become self reliant. Mechanics for Africa (MFA) will set up a school for motor mechanics in Ndola, Zambia, in association with Malford Baptist Church in Surrey. MFA (charity registration No 1086333) was launched recently by its patron, the Rt Hon Virginia Bottomley, MP.

Part of the holistic curriculum will help introduce the need for health awareness among ordinary local people, particularly with HIV/AIDS and other STDS, diarrhoea and resultant dehydration. Other topics to be covered will include malaria (still the biggest killer, especially among children), nutrition, first aid, hygiene, etc. All this to be part of a balanced "life skills" curriculum which will empower students to improve their lives; and of their families by inviting them to participate in these studies.

The project asks companies, organisations, and individuals to become financially involved at various levels either through donation, tax reclaimable gifts, or loans.

MFA is the brainchild of Charles and Sharonne Watt who have worked on aid projects in southern Africa for 3 years and had the opportunity to evaluate the needs of local and wider communities.

Apart from offering a 2 year course in motor mechanics and maintenance—leading to an internationally recognised City and Guilds qualification—the aim of the project is to offer a balanced curriculum including health education and basic business administration.

Land and property for training and workshop development has already been purchased on the outskirts of Ndola (population 500 000) in the heart of Zambia’s copperbelt.

The MFA project is designed to eventually become self funding with a commercial service for vehicle maintenance planned to operate independently and in tandem with the charity.

Mechanics for Africa is actively seeking funds and donations. Further details: Mechanics for Africa, Bridian Farm, Alford, Surrey GU6 8HR, UK (tel: 01403 752 384; fax: 01483 421 271; email: charlie,sharonne@bigfoot.com; web: www.mfazambia.com).