The management of sexually transmitted infections by Australian general practitioners

V J Johnston, H Britt, Y Pan, A Mindel

See end of article for authors' affiliations

Correspondence to: Professor A Mindel, Sexually Transmitted Infections Research Centre (STIRC), University of Sydney, Marian Villa, Westmead Hospital, Westmead, NSW 2145, Australia; adriannm@icpmr.wsahs.nsw.gov.au

Accepted for publication 19 November 2003

Objectives: To ascertain how frequently general practitioners (GPs) in Australia encounter sexually transmitted infections (STIs), how STIs are managed in general practice, and the characteristics of GPs who manage STIs.

Methods: Data were derived from the Bettering the Evaluation and Care of Health (BEACH) database. BEACH is a cross sectional survey of national GP activity. Approximately 1000 GPs per year each record details of 100 consecutive patient encounters. Details from April 1998 to March 2001 about frequency and pattern of STIs managed and the characteristics of GP managing them were analysed using SAS.

Results: 3030 GPs provided data on 303 000 encounters. Only 521 problems managed were STIs. Viral STIs were most frequently managed including genital herpes (0.08 per 100 encounters), genital warts (0.07 per 100 encounters). Gonorrhoea, syphilis, chlamydia, and trichomoniasis were rarely managed. Medication was prescribed at a rate of 56.1 per 100 STI contacts (95% CI 50.4 to 61.7). Antivirals were the most common followed by topical chemotherapeutics. GPs managing STIs were significantly younger and more likely to be female, urban, have fewer years in practice, work fewer sessions a week, work in a larger practice, have graduated in Australia, and hold the FRACGP (all p<0.005) than those who did not.

Conclusion: Management of diagnosed STIs forms only a small part of a GP’s workload in Australia. Genital herpes and warts are the most commonly managed conditions. GPs managing STIs are different from those who do not. Strategies to improve diagnosis, management, and screening should be evaluated.

In Australia sexual health services are provided by a number of agencies including sexual health clinics, family planning clinics, gynaecologists, infectious disease specialists, Aboriginal Medical Services (AMS), and general practitioners (GPs). GPs are ideally placed to have a major impact on sexually transmitted infection (STI) prevention, diagnosis, and management, with over 80% of Australians attending a GP in any one year. However, it is not known how frequently STIs are managed in general practice.

Limited general practice surveillance data are available from Australia. A questionnaire based random sample of 520 Victorian GPs found that 19% reported managing an STI daily or weekly, 36% monthly, and 46% infrequently or never. Of STIs managed in the past month, 44% were human papillomavirus, 30% genital herpes, 14% genital chlamydia, and 12% non-specific urethritis. A study from Queensland of GPs with previous experience in diagnosing and managing STIs found that 60% reported having seen over 20 patients at risk of an STI in the previous 12 months and more than 90% had diagnosed at least one case of ano-genital warts, genital herpes, or chlamydia with 25% diagnosing more than six cases. Both studies are small, not nationally representative and used retrospective questionnaires. The data are subjective and dependent on the GP’s estimate of encountered cases. These are often overestimates.

Data obtained at the time of patient encounter provides a better reflection of the actual situation. The Australian Morbidity and Treatment survey in general practice was carried out in 1991. Four hundred and ninety five GPs recorded details of all patient encounters for two 1 week periods, 6 months apart. Genital and reproductive problems were the fifth (10.1%) and eighth (7.0%) most frequently managed problem for women, while genital problems were the twelfth (2.5%) most common for men. However, these figures are only an indicator of STIs managed as they include well check-ups and symptoms or diagnoses that may not be associated with STIs.

International research in this field is also limited. Studies from the United Kingdom have estimated that STIs are managed infrequently in general practice and based on the proportion of laboratory confirmed chlamydial infections that originate from GPs, it has been concluded that GPs seldom request chlamydia tests. The information and statistics division of the National Health Service in Scotland (ISD) has a continuous morbidity recording system consisting of 53 practices (population 307 741). These practices record the reason for contact for all direct encounters. In the year ending March 2000 there were 133 contacts for genital herpes with a prevalence rate of 0.6 per 1000 population, 462 contacts for genital warts with a prevalence of two per 1000, and 24 contacts for gonorrhoea with a prevalence of 0.2 per 1000. These figures are based on presumed infection and, because of the small numbers of cases, have considerable imprecision. In the United Kingdom, lack of adequate data from primary care is a major concern, particularly in light of the national strategy for sexual health and HIV that recommends an increasing role for general practice.

Analysis of the frequency of STI problems managed by Australian GPs has been made possible by access to a database that records data from an ongoing cross sectional survey of GP activity. The aims of this study were to ascertain how frequently Australian GPs manage STIs, how STIs are managed in general practice, and to determine the characteristics of GPs who manage them.

Abbreviations: AMS, Aboriginal Medical Services; BEACH, Bettering the Evaluation and Care of Health; GPs, general practitioners; STIs, sexually transmitted infections
METHODS

The database

Betering the Evaluation and Care of Health (BEACH) is an ongoing cross sectional encounter based survey of general practice activity throughout Australia. The survey was established in April 1998 and the methods have been described in detail elsewhere. In summary, each GP in a random sample of approximately 1000 practising GPs per year, completes details about 100 consecutive GP-patient encounters on standardised paper recording forms. The encounter maybe the first visit for a particular problem or a follow up visit relating to a previously diagnosed condition. Data elements include GP age, sex, years in practice, sessions worked per week, size of practice, practice location, country of graduation, postgraduate general practice training, and FRACGP status. Patient information includes age, sex, cultural background, and up to three reasons for encounter. Up to four problems/diagnoses can be recorded as managed at the encounter. Management data include medication, pathology tests, imaging requests, and referrals. Patient reason for encounters and problems managed were classified according to the International Classification of Primary Care (version 2) (ICPC-2). Medications were classified according to an in-house classification, the Coding Atlas for Pharmaceutical Substances (CAPS) and to the Anatomical Therapeutic Chemical Classification System.

Statistical methods

The database was analysed using SAS version 6.12 with the encounter being the primary unit of analysis. Where events can only occur once in a consultation (for example, age, sex, Medicare item number) percentages are used to describe the distribution. If an event can occur more than once (for example, pathology tests, imaging requests, and referrals) then rates per 100 encounters are used. Differences in GP characteristics and paired t test to calculate differences in GP characteristics and paired t test to calculate differences in patient age groups.

RESULTS

In all, 3030 GPs provided data on 303 000 encounters. There were only 521 STIs recorded (0.17 per 100 encounters). Viral STIs were by far the most common and included genital herpes (0.08 per 100 encounters) and genital warts (0.07 per 100 encounters). Bacterial and protozoal STIs were managed rarely—gonorrhoea (0.005 per 100 encounters), female trichomioniasis (0.005 per 100 encounters), female chlamydia (0.004 per 100 encounters), and syphilis (0.003 per 100 encounters). The breakdown by sex for the viral STIs revealed a preponderance of cases in women—genital herpes (2:1), and genital warts (1:3:1). Gonorrhoea was managed on only 15 occasions (six women, nine men) and syphilis on nine occasions (seven women, two men).

National annual estimates during this 3 year period calculated using the BEACH data were 39 466 encounters for genital herpes, 24 933 encounters for genital warts, 1733 encounters for female trichomioniasis, 1700 encounters for gonorrhoea, 1266 encounters for female chlamydia, and 1033 for syphilis. Because of the small number of cases of bacterial and protozoal STIs, these figures should be interpreted with caution.

Patient characteristics

Of the 521 patients who had an STI managed, 329 (63.1%) were female and 189 (36.3%) male (missing which sex in three). In 350 (67.2%) patients the problem had previously been managed by a medical practitioner and 459 (88.1%) had been seen previously at the practice. Those in the 25–44 year old age group accounted for about half of both the men (56.6% n = 107) and women (50.5% n = 166). One in three (30.4% n = 100) of the women and one in five (19.6% n = 37) of the men were aged between 15 and 24. Age was missing for four patients. Thirty three (6.3%) were identified as being from a non-English speaking background and five as Aboriginal people or Torres Strait Islanders. The sex breakdown was not significantly different from the total of the patients at BEACH encounters (men 36.49% v 41.1%; women 63.51% v 58.88%; p = 0.112). However, STI patients were significantly younger than the total sample in BEACH (p = 0.005).

Reasons for encounter (RFE)

Two hundred and eighty four (54.8%) patients gave only one RFE, 145 (28.0%) gave two RFEs, and 89 (17.2%) three RFEs. Patients often described the RFEs in diagnostic terms—female condylomata acuminata (12.5 per 100 encounters, 95% CI 9.5 to 15.5), male condylomata acuminata (11.7 per 100 encounters, 95% CI 9 to 14.5), female genital herpes (10.4 per 100 encounters, 95% CI 7.8 to 12.9), and male genital herpes (5.57 per 100 encounters, 95% CI 3.9 to 7.3). Other frequent RFEs included a request for prescriptions (7.5 per 100 encounters, 95% CI 5.4 to 9.6), test results (6.7 per 100 encounters, 95% CI 4.8 to 8.6), female genital check-up (6.1 per 100 encounters, 95% CI 4.3 to 8.0).

Patient management

Although genital herpes was the most common STI to be managed, only five viral cultures, one herpes simplex virus (HSV) culture and three HSV serology tests were carried out during this time. Other tests were also uncommon and included 33 vaginal swabs for microscopy and culture, four cervical swabs, three urethral or penile swabs, 10 chlamydia tests, eight HIV, two syphilis, and two hepatitis B serology tests.

Medication was prescribed at a rate of 56.1 per 100 STIs (95% CI 50.4 to 61.7). Antivirals accounted for 58.6% of medications (95% CI 51.6 to 65.3) and chemotherapeutics for topical use 16.7% (95% CI 0 to 36.4), reflecting the STI encountered. Systemic aciclovir was prescribed as often as valaciclovir (n = 64; 22.0% of STIs v n = 67; 23.0%). Famiclovir, however, was only prescribed on 27 occasions (9.3%). Antibiotics, which were prescribed infrequently, included tinidazole (n = 9; 3.1% of STIs), metronidazole (n = 7; 2.4%), procaine penicillin (n = 4; 1.4%), ciprofloxacin (n = 4; 1.4%), azithromycin (n = 4; 1.4%), ceftriaxone (n = 3; 1.0%), doxycycline (n = 3; 1.0%), and amoxycillin (n = 2; 0.7%). At 20.0% of contacts with STI (95% CI 6.6 to 33.3), excision, destruction, or cauterisation took place. Counselling, education, or advice was documented at a rate of only 33 per 100 STI contacts. Of the 521 STIs managed, 34 were referred, 11 to gynaecologists, four to sexual health physicians, three to dermatologists, surgical specialist or non-specified specialist, two to urologists, a health professional, hospital or a clinic, and one to an obstetrician or a physician.
GP characteristics
The characteristics of the 417 GPs (17.1%) who documented the management of the 521 STIs are compared with all BEACH GPs in Table 1. GPs who diagnosed STIs were more likely to be female, younger, urban, have fewer years in practice, work fewer sessions per week, work in a larger group practice, have graduated in Australia and hold a fellowship of the RACGP than the BEACH cohort as a whole.

DISCUSSION
This study is the first national representative study of STI management in general practice in Australia. The results show that Australian GPs manage STIs infrequently and are more likely to deal with viral STIs than bacterial STIs. Each of the more frequently managed STIs was managed at rates of less than one per 1000 GP-patient encounters. In addition, the characteristics of general practitioners managing STIs were significantly different to those of the total BEACH GP sample. GPs managing STIs were more likely to be younger, female, work fewer sessions per week, work in multi-practitioner practices, have graduated in Australia, and hold a fellowship of the Royal Australian College of General Practitioners (FRACGP).

There are a number of possible reasons for the low management rate of STIs in general practice suggested by this study. Firstly, the prevalence of bacterial STIs in the community may be low and the frequencies in this study simply a reflection of this. This may be true for gonorrhoea and syphilis in the general population. Certain minority groups in Australia, in particular homosexual males and some Indigenous communities, have been noted to have higher levels of bacterial STIs than documented in the general population. These groups may be more likely to attend specialist services such as sexual health clinics or AMS or alternatively attend GPs with a specialised interest in the area. Secondly, these data only look at a snapshot of a patient’s overall management. GPs may be labelling the symptom or a syndrome such as cervicitis or urethritis and treating empirically rather than isolating a pathogen to give the definitive diagnosis. Evidence from other studies suggests that presumptive treatment is common practice and confirmatory laboratory tests are not always done. This study did not include symptom labels and this is reflected in the relatively low pathology test rate. Higher rates could be expected in the diagnostic rather than the post-diagnostic phase. Thirdly, bacterial STIs are often asymptomatic, especially chlamydia and gonorrhoea in females. In males urethral gonorrhoea is usually symptomatic; however if the infection is either rectal or pharyngeal this is not the case. Without screening, therefore, the infection will not be identified and not treated. Barriers to screening identified in general practice include the health seeking behaviour of those at highest risk, lack of opportunistic sexual history taking and therefore failure to identify individuals at risk, gaps in GPs’ knowledge, attitudes, behaviour, and practice, lack of appropriate facilities for screening and “Medicare barriers,” in particular discouragement of screening and the “three test rule”—where the pathology laboratory is only able to claim a rebate for the three most expensive tests performed on a patient on any one day.

What steps should be taken in order to optimise the diagnosis and management of STIs in general practice?

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Comparison between general practitioners (GPs) who managed STIs and the BEACH cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP characteristics</td>
<td>STI GPs</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>205 (49.4%)</td>
</tr>
<tr>
<td>Female</td>
<td>210 (50.6%)</td>
</tr>
<tr>
<td>Missing</td>
<td>2</td>
</tr>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td><35</td>
<td>42 (10.1%)</td>
</tr>
<tr>
<td>35–44</td>
<td>162 (39.0%)</td>
</tr>
<tr>
<td>45–54</td>
<td>125 (30.1%)</td>
</tr>
<tr>
<td>>55</td>
<td>86 (20.7%)</td>
</tr>
<tr>
<td>Missing</td>
<td>2</td>
</tr>
<tr>
<td>Years in general practice</td>
<td></td>
</tr>
<tr>
<td><10</td>
<td>126 (30.7%)</td>
</tr>
<tr>
<td>>10</td>
<td>286 (69.4%)</td>
</tr>
<tr>
<td>Missing</td>
<td>5</td>
</tr>
<tr>
<td>Sessions per week</td>
<td></td>
</tr>
<tr>
<td><5</td>
<td>86 (21.2%)</td>
</tr>
<tr>
<td>6–10</td>
<td>273 (66.6%)</td>
</tr>
<tr>
<td>>10</td>
<td>50 (12.2%)</td>
</tr>
<tr>
<td>Missing</td>
<td>7</td>
</tr>
<tr>
<td>Size of practice</td>
<td></td>
</tr>
<tr>
<td>Solo</td>
<td>45 (11.2%)</td>
</tr>
<tr>
<td>2–4 GPs</td>
<td>153 (38.0%)</td>
</tr>
<tr>
<td>>4 GPs</td>
<td>205 (50.9%)</td>
</tr>
<tr>
<td>Missing</td>
<td>14</td>
</tr>
<tr>
<td>Location of practice</td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>317 (76.0%)</td>
</tr>
<tr>
<td>Rural</td>
<td>100 (24.0%)</td>
</tr>
<tr>
<td>Country of graduation</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>224 (79.0%)</td>
</tr>
<tr>
<td>Other</td>
<td>65 (20.8%)</td>
</tr>
<tr>
<td>Missing</td>
<td>7</td>
</tr>
<tr>
<td>RACGP training programme</td>
<td></td>
</tr>
<tr>
<td>HOLDFACGP</td>
<td>9 (2.2%)</td>
</tr>
<tr>
<td>Missing</td>
<td>14</td>
</tr>
<tr>
<td>Missing</td>
<td>15</td>
</tr>
</tbody>
</table>

RACGP = Royal Australian College of General Practitioners; FRACGP = Fellow of the Royal College of General Practitioners.
Improving public education and knowledge may encourage those at risk, whether they have symptoms or not, to seek screening and if necessary treatment. Strategies to ensure that the majority of GPs have the skills, knowledge, and confidence to manage STIs need to be developed and evaluated. Finally, in Australia, a national STI control strategy needs to be developed and initiated. The aims of this strategy should include—reducing the incidence of clinically apparent and undiagnosed STIs, reducing the transmission of STIs, and reducing the social stigma associated with STIs. Elements of this strategy should include providing clear information to the general public to enable people to make informed decisions about diagnosis, treatment and prevention of transmission, providing a range of easily accessible screening and management options (including general practice) for individuals with suspected STIs, setting standards for STI screening and management, and establishing priorities for future research thereby improving the evidence base for good practice in sexual health.

Although medical services differ around the world, we believe that the findings from this study will have important implications in assisting the development of sexual health services in general practice in many parts of the world and, in particular, in the United Kingdom where the recently published House of Commons Health Select Committee inquiry into sexual health concluded that sexual health services were a shambles. In addition, despite the government’s sexual health strategy calling for more sexual health services to be delegated to primary care trusts (that is, GPs), there is little evidence to suggest that this is occurring.

ACKNOWLEDGEMENTS

During 1998–2001 the BEACH programme was funded by the Australian Commonwealth Department of Health and Ageing, the Commonwealth Department of Veterans’ Affairs, the National Occupational Health and Safety Commission, AstraZeneca (Australia), Roche Products Pty Ltd, Aventis Pharma Pty Ltd, and Janssen-Cilag Pty Ltd.

Authors’ affiliations

V J Johnston, A Mindel, Sexually Transmitted Infections Research Centre (STIRC), University of Sydney, Marian Villa, Westmead Hospital, Westmead, NSW 2145, Australia

H Brit, Y Pan, AIHW General Practice Statistics and Classification Unit, University of Sydney, Acacia House, Westmead Hospital, Westmead, NSW 2145, Australia

Conflict of interest: This article was researched, analysed and written as an independent analysis of data from Bettering the Evaluation and Care of Health (BEACH) study. There was no conflict of interest for the authors in the preparation of this article.

REFERENCES

HIV transmission among men who have sex with men through oral sex

While the risk of transmission through oral sex for men who have sex with men (MSM) is low, discrepancies remain between study findings and there is uncertainty about the exact degree of risk.1

Between July 2001 and September 2003, a total of 4150 MSM were newly diagnosed with HIV infection in England, Wales, and Northern Ireland and reported to the Communicable Disease Surveillance Centre in London. Reports for 1359 cases received during this time included the question “Does the patient believe himself to have been infected through oral sex?” The remaining 2791 cases had only laboratory reports or earlier clinician report forms where this question was not asked.

The oral sex question was answered for 688 (50.6%) of the 1359 cases, of which for 629 (90.8%) the response was no, and yes for 63 (9.2%) cases. For 671 cases this information was not recorded even though the question was included on the form.

All 63 cases where the patient believed himself to have been infected with HIV through oral sex were further investigated by a discussion with the clinician or healthcare provider. From these further discussions during the follow up, 27 (42.8%) cases were believed to have been infected from unprotected anal sex but unprotected oral sex. Previous negative testing history and HIV status of partners was taken into account when discussing possible HIV risk with clinicians or healthcare providers.

It is difficult to quantify oral sex risks and this could be an obstacle to accuracy2; none of these individuals were re-interviewed for this study and risk was assessed by clinician and note review only. There may be recall difficulties surrounding condom use, including when they were used, or if used, coming off or splitting, or brief anal-penile contact that was not considered relevant or remembered. In addition, there was limited information about whether ejaculation had occurred or about breaks in the oral mucosa. However, 16 cases reported no anal sex and 20 cases reported only protected anal sex and unprotected oral sex. In total this represents 5.2% of those MSM reports where the question was answered. We are aware that, for half, the question was not answered, and if we classified those reports as not infected through oral sex, then 2.6% (36 of 1359) were probably infected through this route. The indication given by these UK surveillance data is that oral sex carries a small but real risk.

V L Gilbert, B G Evans, S Dougan Communicable Diseases Surveillance Centre, 61 Colindale Avenue, London NW9 5EQ, UK

Correspondence to: Ms Victoria Gilbert, Communicable Diseases Surveillance Centre, 61 Colindale Avenue, London NW9 5EQ, UK; Vicky.gilbert@hpa.org.uk

doi: 10.1136/sti.2004.009217

Accepted for publication 7 January 2004

References

The correct approach to modelling and evaluating chlamydia screening

A recent systematic review of economic evaluations suggests that screening for genital chlamydia infection is “cost effective.”3 We are concerned about how the authors reached this conclusion. The reviewers did not take into account the fact that Chlamydia trachomatis is infectious. The methodological problems arising from this fundamental flaw raise questions about the validity of the conclusion.

The correct model to use in the evaluation of an infectious disease must be capable of encompassing all its effects, including the potential for transmission. Bernoulli first reported such transmission dynamic models in the 18th century.4 The wide misuse of static, as opposed to transmission dynamic, models has been noted in the economics literature on vaccination programmes,5 but the message has been slow to transcend to the economics literature on sexually transmitted infections, with a few notable exceptions.6 In the case of screening for genital chlamydia, someone who is successfully treated might be re-infected; the benefits of treatment in preventing long term sequelae will be lost, and the person could continue to infect others. If they are successfully treated without re-infection, however, they will not transmit infection. Since the two possibilities have opposing effects on the number of cases, the direction of change in the cost effectiveness ratio is uncertain; it could overestimate or underestimate the true cost effectiveness. Economic evaluations that do not incorporate these effects are, therefore, very unlikely to model the outcomes of a chlamydia screening programme accurately.

Although the use of objective criteria to assess the quality of identified papers was praised in a recent STI editorial,7 the checklist used by Honey et al is outdated and was not applied appropriately for an infectious disease. This led the authors to include papers whose results might be unreliable. The use of more recent and widely used guidelines, which ask questions about the choice of model type and the justification for the key parameters on which the model is based,8 may have drawn attention to the problems of static models. Furthermore, the review included studies that used “cost per case detected,” which is an inadequate outcome for screening programmes because it does not take into account resource implications associated with the course of action taken by individuals after case detection.

We have recently concluded our own systematic review of economic analyses of screening programmes for genital chlamydia infection, as part of the ongoing Chlamydia Screening Studies project (ClaSS). While the majority of studies we identified had used an incorrect modelling approach, we did identify a full economic evaluation that had used a dynamic model to evaluate chlamydia screening. This was identified by Honey et al but excluded because they thought that it did not fulfil their inclusion criteria.9

We propose that all future economic evaluations of chlamydia screening should use a dynamic modelling approach. A consensus panel to develop guidelines for the conduct of economic evaluations of interventions for sexually transmitted infections could take this recommendation into account.10

T Roberts, S Robinson, P Barton, S Bryan, A McCarthy, J Macleod, M Egger, N Low Health Economics Facility, HSMMC, University of Birmingham, Park House, 40 Edgbaston Park Road, Birmingham B15 2RT, UK

Correspondence to: T Roberts, Health Economics Facility, HSMMC, University of Birmingham, Park House, 40 Edgbaston Park Road, Birmingham B15 2RT, UK; t.e.roberts@bham.ac.uk

doi: 10.1136/sti.2003.008458

Accepted for publication 19 November 2003

Conflict of interest: The authors are all members of the Chlamydia trachomatis Screening Studies (ClaSS) Working Group. Part of the remit of this group is to conduct a systematic review of the economic studies of Chlamydia trachomatis screening and to construct a model with which to evaluate the cost effectiveness of chlamydia screening.

References
2 Bernoulli D. Mathematical and physical memoirs, taken from the registers of the Royal Academy of
In Haryana, India, with a geographical area of 27,632 square miles, an HIV sentinel surveillance was carried out, on a regular basis (1998–2002), on consecutive serum samples of 400 antenatal clinic (ANC) attendees (three sites) and 250 sexually transmitted diseases (STD) clinic attendees (four sites). This was done for each 12 week period per year as unlinked anonymous testing with one of the ELISA/rapid/simple tests. A sample that was positive with two tests of different assays was considered HIV positive. The other STDs were diagnosed clinically and using appropriate laboratory tests.

Of the 7933 men and women who participated in the HIV sentinel surveillance from 1998–2002, 15 (0.3%) of 5200 ANC attendees and 48 (1.8%) of 2733 STD clinic attendees had HIV. Though HIV prevalence is still below 1% among the ANC attendees, a gradual increase over these 5 years has been observed though statistically it was not found to be significant (Table 1). With increasing HIV infection among antenatal women, paediatric AIDS is poised to become an important public health problem.

The odds ratios (ORs) of HIV infection for men compared to women decreased by age; men aged 20–29 years were nearly thrice as likely as women to be HIV infected (OR 2.68 (95% CI 1.1 to 6.7)). When we combined the literacy status for both men and women, the HIV prevalence was statistically significant among the literate of more than fifth grade (p value = 0.0416) but was not found to be significant when combined for ANC attendees. School or college education, therefore, does not have any impact on this epidemic. Emphasis has to be given to educate the general public about AIDS.

Among the STD clinic attendees presenting with genital ulcer, HIV reactivity (3.9%, 7/181) and VDRL reactivity (11.6%, 21/181) were found to be statistically significant (p<0.05, χ² test used). Therefore, in India, where the overall level of HIV is still low, a high level of STDs in certain states makes for a continuing potential for the epidemic to become generalised among all sexually active adults. Differences across the states may just be a matter of time.

As per the sentinel surveillance data in the year 1998, there were seven moderate prevalence states (prevalence among ANC attendees <1% but prevalence among the STD clinic attendees >5%) and 19 states of low prevalence compared to two states only with moderate prevalence rates and 24 states

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Antenatal clinic attendees</th>
<th>STD clinic attendees</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HIV reactive</td>
<td>STD clinic attendees</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% (No)†</td>
<td>% (No)</td>
<td>% (No)</td>
</tr>
<tr>
<td>Age groups (years)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15–19</td>
<td>0.3 (383) ns</td>
<td>1.8 (113) 0 (57)</td>
<td>††</td>
</tr>
<tr>
<td>20–29</td>
<td>0.3 (417) ns</td>
<td>2.5 (756) 0.9 (639)</td>
<td>2.68 (1.1 to 6.7)</td>
</tr>
<tr>
<td>30–44</td>
<td>0.2 (630) ns</td>
<td>2.8 (432) 1.3 (547)</td>
<td>2.80 (1.1 to 6.9)</td>
</tr>
<tr>
<td>>45</td>
<td>0 (16) ns</td>
<td>1.5 (132) 0 (57)</td>
<td></td>
</tr>
<tr>
<td>Sentinel year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb–Mar 1998</td>
<td>0 (400) ns</td>
<td>3.3 (211) 3.1 (32)</td>
<td>1.06 (0.1 to 0.3)</td>
</tr>
<tr>
<td>Aug–Oct 1999</td>
<td>0 (400) ns</td>
<td>5.7 (123) 0 (10)</td>
<td></td>
</tr>
<tr>
<td>Aug–Oct 2000</td>
<td>0.08 (1200) ns</td>
<td>2.2 (274) 2.3 (221)</td>
<td>0.97 (0.3 to 3.1)</td>
</tr>
<tr>
<td>Aug–Oct 2001</td>
<td>0.4 (1200) ns</td>
<td>2.5 (410) 0.7 (454)</td>
<td>2.21 (0.6 to 8.8)</td>
</tr>
<tr>
<td>Aug–Oct 2002</td>
<td>0.6 (1600) ns</td>
<td>2.2 (415) 0.7 (578)</td>
<td>3.13 (1.0 to 10.1)</td>
</tr>
<tr>
<td>Residence (2001–2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>0.4 (1573) ns</td>
<td>1.0 (543) 1.0 (659)</td>
<td>0.87 (0.3 to 2.7)</td>
</tr>
<tr>
<td>Rural</td>
<td>0.7 (1227) ns</td>
<td>2.5 (515) 1.2 (630)</td>
<td>1.99 (0.8 to 4.8)</td>
</tr>
<tr>
<td>Population (2001–2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Migrant</td>
<td>0.9 (224) ns</td>
<td>0.2 (23) 0 (41)</td>
<td>ns</td>
</tr>
<tr>
<td>Non-migrant</td>
<td>0.5 (2576) ns</td>
<td>2.3 (392) 0.7 (537)</td>
<td>3.08 (1.0 to 9.9)</td>
</tr>
<tr>
<td>Literacy status (2001–2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literate</td>
<td>0.5 (859) ns</td>
<td>0.6 (88) 0.9 (220)</td>
<td>ns</td>
</tr>
<tr>
<td>Literate till 5th grade</td>
<td>0.6 (524) ns</td>
<td>3.1 (65) 0.9 (114)</td>
<td>3.51 (0.3 to 37.9)</td>
</tr>
<tr>
<td>Literate till 12th grade</td>
<td>0.5 (1173) ns</td>
<td>2.1 (193) 0.5 (184)</td>
<td>3.81 (0.4 to 33.8)</td>
</tr>
<tr>
<td>Graduation not done</td>
<td>0.4 (244) ns</td>
<td>4.3 (69) 0 (60)</td>
<td>ns</td>
</tr>
<tr>
<td>Occupation of spouses†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business</td>
<td>0.4 (435) ns</td>
<td>1.8 (56)</td>
<td></td>
</tr>
<tr>
<td>Industrial and factory</td>
<td>0.3 (325) ns</td>
<td>3.0 (33) 20.0 (5)</td>
<td>0.15 (0.0 to 2.1)</td>
</tr>
<tr>
<td>Workers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service</td>
<td>0.2 (539) ns</td>
<td>1.1 (94) 0 (29)</td>
<td>ns</td>
</tr>
<tr>
<td>Agriculture and unskilled workers</td>
<td>0.7 (1241) ns</td>
<td>1.3 (153) 0 (10)</td>
<td>ns</td>
</tr>
<tr>
<td>Truck/auto/taxi driver</td>
<td>0.6 (160) ns</td>
<td>16.7 (18) 0 (1)</td>
<td>ns</td>
</tr>
<tr>
<td>Hotel staff</td>
<td>0 (6) ns</td>
<td>0 (1)</td>
<td>ns</td>
</tr>
<tr>
<td>Unemployed</td>
<td>0 (60) ns</td>
<td>0 (15) 0.6 (522)</td>
<td>ns</td>
</tr>
<tr>
<td>Students</td>
<td>0 (34) ns</td>
<td>2.2 (45) 0 (11)</td>
<td>ns</td>
</tr>
<tr>
<td>Syndrome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genital ulcer</td>
<td>2.5 (403) 2.7 (148)</td>
<td>0.92 (0.3 to 2.9)</td>
<td>ns</td>
</tr>
<tr>
<td>Urethral/cervical discharge</td>
<td>1.0 (511) 0.9 (1043)</td>
<td>1.13 (0.4 to 3.4)</td>
<td>ns</td>
</tr>
<tr>
<td>Genital ulcer and discharge</td>
<td>3.4 (59) 1.5 (66)</td>
<td>2.24 (0.2 to 24.0)</td>
<td>ns</td>
</tr>
<tr>
<td>Genital warts</td>
<td>2.4 (85) 0 (32)</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>

*Number of attendees.
†Among the antenatal clinic attendees, the majority of the occupations stated are those of the spouses with only occasional women having in that occupation.
p Value = 0.05 (ns = not significant) in all the characteristics (χ² test used).
††Men/women ratio (95% CI) couldn’t be calculated.
*χ² Value for test between sexes (χ² test used).

Table 1. HIV prevalence rates for the attendees tested in sentinel surveillance programme, 1998–2002.
with low HIV prevalence rates (prevalence among the STD clinic attendees <3%) in the year 2001 while six states stayed as high prevalence states (prevalence among ANC attendees >1%). Haryana is still maintaining itself in a low level epidemic category. It is speculated that the effect of STD control and screening of ANC attendees for HIV transmission increase with the maturation of the HIV epidemic as experienced in trials in Tanzania and Uganda. Therefore, we should increase intervention programmes in all high risk groups as well as in the general population of this city while it is still in the early epidemic phase to ensure that this cost effective opportunity is not missed.

Acknowledgements
The authors wish to thank the senior technician in charge, Shri Satpal Singh, for his assistance in the fieldwork and laboratory procedures throughout this study. The statistical help provided by Shri R C Goel, PGIMER, Chandigarh, is duly acknowledged. We also thank Professor Narottam Sharma from the Regional Institute of English Chandigarh, UT for proof reading of the manuscript. We also acknowledge National AIDS Control Organisation (NACO) for its continuing guidance and the supply of free kits for HIV testing.

Contributors
DRA, BA, protocol development for field implementation, final approval of manuscript; VG, PG, field implementation of clinical and laboratory procedures, writing; DRA, BA, VG, analysis and interpretation, critical reviewing of manuscript.

D R Arora
Department of Microbiology, Voluntary Counselling and Testing Centre for AIDS, Post-graduate Institute of Medical Sciences (PGIMS), Rohtak, Haryana, India

V Gautam
Department of Microbiology, Government Medical College and Hospital, Chandigarh, India

P S Gill
Department of Microbiology, Post-graduate Institute of Medical Sciences (PGIMS), Rohtak, Haryana, India

B Arora
Department of Pathology, Post-graduate Institute of Medical Sciences (PGIMS), Rohtak, Haryana, India

V Gupta
Department of Microbiology, Voluntary Counselling and Testing Centre for AIDS, Government Medical College and Hospital, Chandigarh, India

Correspondence to: Dr V Gautam, 3243/21 D, Chandigarh, India-160022; r_vg@yahoo.co.uk

doi: 10.1136/sti.2003.008672

Accepted for publication 2 December 2003

Increased numbers of acute hepatitis C infections in HIV positive homosexual men; is sexual transmission feeding the increase?

Although the principal mode of hepatitis C (HCV) transmission in the United Kingdom is injecting drug use (IDU), the risk for a third of infections is unknown. The contribution of sexual transmission between men who have sex with men (MSM) to the spread of hepatitis C is unclear, however evidence is accumulating that both co-infection with HIV and the presence of other sexually transmitted infections (STIs) facilitate sexual transmission of HCV. With the reported increases in unsafe sex and STIs in HIV positive MSM we questioned whether these circumstances may lead to an increase in the number of HCV infections.

This study was undertaken to determine whether within our clinics, changes in the number of individuals being diagnosed with acute HCV infection were occurring and to ascertain risk factors for acquisition in these individuals.

A case note review of all patients within the HIV and sexual health clinics of St Stephen’s Centre with diagnosed acute HCV infection between January 1997 and December 2002 was performed. Patients newly diagnosed with HCV were identified from departmental computer records. Cases were defined as individuals with a newly positive and a previous negative HCV antibody test. Where negative tests had been performed more than a year earlier, testing of stored samples was undertaken to determine more precise timing of HCV seroconversion. Testing was done using the Monolisa anti-HCV version 2 enzyme immunoassay.

Twenty six male (all MSM) and one female case were identified; median age was 34 years. Twenty five individuals were HIV positive. The median time between negative and positive HCV antibody tests was 5 months (interquartile range 3–10 months). There was a significant increase in HCV seroconversions over the study period (see fig 1).

The indications for HCV testing were the development of abnormal alanine transaminase (ALT) (21), recent IDU (two), sexual contact with HCV positive partner (one), and asymptomatic seroconversion (three). Of those tested because of newly abnormal liver function tests (LFTs), 18 were asymptomatic. LFTs were performed as part of routine HIV follow up. There was no increase in HCV tests performed in HIV positive individuals with ALT levels more than 100 IU/l over the study period; however, the percentage of positive HCV tests increased from 0.6 to 9.3 (p value using $ \chi^2 $ test for trend = 0.001). Risks for acquisition of HCV were recent unprotected anal or vaginal sex (21) and IDU (two), while in four there were no documented risk factors. Nine individuals were diagnosed with infectious syphilis either concurrently (three) or in the year before HCV seroconversion. Of the HIV positive patients 15 were on antiretroviral therapy (ARTV) and 11 had a viral load of less than 50 copies/ml. The median CD4 count was 399 x 10^3.

Having multiple sexual partners, a history of STIs, and certain sexual practices have been associated with HCV infection. Reported increases in HCV seroconversion among HIV positive MSM in association with high risk sexual behaviour (unprotected anal sex, fisting, and rimming) suggests an interaction between HIV and sexual practice. As HCV plasma viraemia is higher in co-infected patients and correlates with viral load in saliva and semen, this may facilitate sexual transmission of HCV. Furthermore, there is evidence that ARTV treatment may be associated with increases in HCV RNA levels.

While retrospective assessment of risk factors may be problematic, features of this study make us more confident of attributing risk to sexual activity. Data were collected in both general HIV and specialist hepatitis clinics, and also most patients were under long term follow up allowing cumulative recording of risks particularly those relating to IDU.

Although it is possible that increased numbers result from changing HCV testing thresholds there was no evidence of this when we examined HCV tests performed to investigate those with abnormal LFTs, the commonest scenario leading to diagnosis. As the ALT trigger was present in the HIV positive group and not in the sexual health clinic attendees, the numbers from this source may be under-represented.

Determining the associated factors for transmission of HCV is critically important in order to introduce targeted screening and prevention interventions. As 85% of infected patients become chronic carriers and treatment of acute hepatitis C leads to high clearance rates, these strategies may be crucial in reducing the carrier pool of HCV, further transmissions and the risk of cirrhosis and hepatoma.

The study numbers are small and may represent a pocket of infection not indicative of increased risks in larger populations. However, the manner in which these infections parallel recent increases in STIs gives cause for the concern that risks may be more generalised. Further studies are needed to clarify this trend.

R Browne, D Ashoe, Y Gilbeece, M Atkins, S Mandalia, B Gazzard, M Nelson
St Stephens Centre, Chelsea and Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK

References

![Figure 1](https://example.com/figure1.png)

Figure 1 Changing incidence of documented HCV seroconversion per 1000 patient years.

- Year 1997
- Year 1998
- Year 1999
- Year 2000
- Year 2001
- Year 2002

- Incidence of HCV seroconversion per 1000 patient years

- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10

- 1997
- 1999
- 2001
- 2002

- Incidence of HCV seroconversion per 1000 patient years

- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10

- 1997
- 1999
- 2001
- 2002

- Incidence of HCV seroconversion per 1000 patient years

- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10

- 1997
- 1999
- 2001
- 2002

- Incidence of HCV seroconversion per 1000 patient years

- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10

- 1997
- 1999
- 2001
- 2002

- Incidence of HCV seroconversion per 1000 patient years

- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10

- 1997
- 1999
- 2001
- 2002

- Incidence of HCV seroconversion per 1000 patient years

- 0
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10

- 1997
- 1999
- 2001
- 2002
Transmission of Neisseria gonorrhoeae from a toilet seat

In August 2003 a prepubescent 8 year old girl presented with a sudden onset history of a non-irritating, odourless heavy green vaginal discharge which had developed overnight. She had arrived back in Sydney approxi-
mately 24 hours earlier by an international air flight following an overseas holiday with her mother and two adolescent siblings. The family had spent 72 hours in transit flying from Rome to Sydney via Moscow. The child was taken initially to her family doctor and a heavy growth of N gonor-
rhoeae was found. The mother had unusually close contact with the child, as well as the child’s known behaviour in public toilets, it is the belief of the author that the child most probably contracted the infection via autoinoculation while using a mixed toilet in a crowded aeroplane.

Detection of Chlamydia trachomatis by polymerase chain reaction in male patients with non-gonococcal urethritis attending an STD clinic

Genital infection with Chlamydia trachomatis (35–50%) is the single most identifiable cause of non-gonococcal urethritis (NGU) in heterosexual men and may have serious consequences, not only for men but for their partners. In India, a high prevalence of genital C trachomatis infection has been reported in women. Moreover, there is consider-
sably less information on male chlamy-
dial infection.1 4 There is a definite need for reliable screening of C trachomatis genital infection in men in order to prevent under-
diagnosis of the genital infection and to facilitate better clinical management of this infection in India. This study was undertaken with the aim to find the pre-
valence of C trachomatis infection in male patients with NGU attending the STD clinic of a major city hospital in north India.

After obtaining informed oral consent, 90 male patients (age 18–55 years) clinically suspected to have urethritis and attending the STD clinic at Safdarjung Hospital, New Delhi were enrolled. Of these, 85 NGU patients were included in the study on the basis of microscopic examination of urethral swab specimens for the presence of >10 polymorphonuclear neutrophils/high power field and negative results for Neisseria gonorrhoae. None of the patients showed genital lesions. The patients belonged to various socioeconomic groups and the majority of them admitted to having extramarital hetero-
sexual contact. The specimens were collected using sterile cotton tipped swabs (Hi Media, Mumbai, India) from the urethra of each patient after removing the secretions/dis-
charge. The samples were collected in vials containing phosphate buffered saline for screening by a plasmid specific polymerase chain reaction (PCR) assay (517 bp)1 and confirmation by culture in McCoy cell line followed by direct fluorescent assay (DFA) (Minitest, Syva Corporation, Palo Alto, CA, USA) on infected coverslips.2

Urethral C trachomatis infection was found by PCR (fig 1) and culture in 20 (22.3%) and 21 (24.7%) symptomatic male NGU patients, respectively. Further, chlamydial infection was most common (27.6%; statistically non-
significant) in men in the 26–35 years age group. In an earlier hospital based study on male NGU patients reported from India, C trachomatis and Trichomonas vaginalis were the most common pathogens associated with urethral discharge specimens, being responsi-
ble for 18% and 19% cases, respectively.3 Another study from Chennai, India reported the prevalence of C trachomatis infection in male and female genital swab specimens as 18.9% and 32.2% by culture and PCR, respectively.4 Chlamydia and Ureaplasma urea-
thricum were the most common infecting and co-infecting pathogens (51.5% by PCR in first void urine and 45.6% by culture in intra-
urethral swab specimens, respectively) in male patients with NGU attending an Israeli STD clinic.5 In a study from Turkey, the prevalence of C trachomatis genital infection (screened by ligase chain reaction in either
urethral swabs or first void urine) among men with symptomatic urethritis was 15.7% and 9.4%, respectively. This should be viewed with concern particularly in developing countries like India where screening for C trachomatis is not done on a routine basis and, hence, extensive screening should be conducted for detection of genital C trachomatis infection in men using sensitive and specific molecular assays like PCR.

V Vats, S Rastogi, A Kumar, M Ahmed, V Singh, A Mittal
Institute of Pathology (ICMR), Safdarjang Hospital Campus, Post Box no 4909, New Delhi 110 029, India

R K Jain, J Singh
Department of Sexually Transmitted Diseases (STD), Safdarjang Hospital, New Delhi 110 029, India

Correspondence to: Dr Aruna Mittal, Institute of Pathology (ICMR), Safdarjang Hospital campus, Post Box no 4909, New Delhi, 110 029, India;
doi: 10.1136/sti.2003.008839
Accepted for publication 30 January 2004

References

The epidemic escalates with no sign of slowing down, making the country the worst affected in the world. The government continues to try and find excuses not to deliver either treatment or prevention programmes. The sense of stigma is so palpable that ignorance of serostatus carried to the grave seems to be the usual way of living with the virus.

This book tells the story of an HIV intervention project in Carletonville, a mining area near Johannesburg, where mineworkers and female sex workers eke out a day to day existence in which overindulgence in alcohol and unprotected sex appear to be the norm. It tells a salutary tale of a project conceived optimistically that gets dragged down through petty arguments, jealousy, and mistrust but still emerges to provide fresh insights into how to tackle the epidemic.

Working in HIV in South Africa has always been full of challenges and, based on the story told here, those challenges would appear to be increasing. The author (a social scientist and member of the project research team) reports not only the successes, but also, more bravely, the failures of the project. She sets out her stall to tackle HIV through a project focusing at the community level. The plan was to have a project directed by stakeholders who would work together as a group and develop guiding principles that local HIV affected communities could use to support both individuals and promote HIV prevention programmes among female sex workers, miners, and youth. Unfortunately, the mine groups didn’t cooperate and other individuals saw themselves as just that, individuals rather than members of a cohesive, homogeneous community. Peer education, a major component of the project, faced many difficulties. With the benefit of hindsight, it seems as though many of the important stakeholders did not perceive adequate ownership of the project and became disillusioned early on leaving most of the day to day running to those employed by the project directly.

The book is well written and clear and is recommended reading for anyone contemplating a large scale HIV prevention project, whether as a planner, implementer, or evaluator. The book explains social science terminology succinctly for those with limited knowledge of the discipline. It also demonstrates and describes very well that what works in one part of Africa will not necessarily work elsewhere, and that initial local assessment at the design stage of a large scale project is paramount.

As HIV continues to spread outside the high risk groups, the need to educate at the community level also increases but the former group should not be forgotten. A combination of both strategies is probably the best approach. The reality is that, although the HIV epidemic in South and southern Africa has come a long way, there is still some distance to go. Hopefully, those involved in HIV project management will pick up the lessons set out in this excellent little book.

N O’Farrell
Pasteur Suite, Ealing Hospital, London
UB1 3HW, UK; ofarrell@postmaster.co.uk

CORRECTION
doi: 10.1136/sti.2003.006957cor1
The reference list of the paper by V J Johnston, H Britt, Y Pan, and A Mindel, entitled “The management of sexually transmitted infections by Australian general practitioners” (Sex Transm Infect 2004;80:212–5), was published incorrectly. The correct reference list can be found as a data supplement to the article online at http://www.stijournal.com/cgi/content/full/80/3/212/DC1.

NOTICES

22nd International Papillomavirus Conference and Clinical Workshop
This will be held 29 April to 6 May 2005 in Vancouver, British Columbia, Canada. Topics will include animal papillomaviruses, diagnosis, epidemiology, HPV associated neoplasia in the developing world, immunology, molecular pathogenesis, natural history, screening, transcription, and treatment.

For more information please contact: 22nd IPC Secretariat, c/o Venue West Conference Services Ltd, #645-375 Water Street, Vancouver, BC V6B 5C6, Canada; tel: +1 604 681 5226; fax: +1 604 681 2503; email: congress@venuwest.com; website: www.hpv2005.org.

16th Biennial Meeting of the ISSTDR
The 16th Biennial Meeting of the International Society for Sexually Transmitted Diseases Research (ISSTDR) will be held 10–13 July 2005 in Amsterdam, The Netherlands. The meeting will be organised jointly by Dutch and Belgian STD researchers. For more information please visit www.isstdr.org.

Answers to MCQs on p 320

(1) a (2) c (3) b (4) c (5) c (6) d (7) d (8) a (9) d (10) b