Projecting the demographic consequences of adult HIV prevalence trends: the Spectrum Projection Package

J Stover

This paper describes the software package Spectrum, which is a modular program that is used to examine the consequences of current trends and future program interventions in reproductive health. It is used to determine the consequences of the HIV/AIDS epidemic, including the number of people living with HIV/AIDS by age and sex, the number of AIDS deaths, and the number of orphans as a result of AIDS, as well as other demographic indicators of interest, such as life expectancy and <5 mortality. The core of Spectrum is a demographic projection model called DemProj, which projects the population by age and sex. Other modules interact with the demographic projection. The HIV/AIDS projections are added to the demographic projections using a module called AIDS Impact Model. This module uses the projection of adult HIV prevalence over time, which is prepared using the Estimation and Projection Package model or the projection workbook. It also requires assumptions about the epidemiology of HIV, including the ratio of female:male prevalence, the distribution of infection by age, the distribution of the time from infection until AIDS death, and the effect of HIV on fertility.

DEMOGRAPHIC PROJECTIONS

The demographic projection component of Spectrum, DemProj, is a full featured cohort component projection model. The inputs are the population by age and sex in the base year, the total fertility rate over time, the age distribution of fertility, life expectancy at birth in the absence of AIDS, the age pattern of mortality, and the number and distribution by age and sex of international migrants. Several features are included to make the program easy to use for the non-demographer. One feature, called EasyProj, automatically creates a demographic projection for any country or region in the world. The projection can start in any year from 1950 to 2005 and extend as far as 2050. These estimates and projections are drawn from those prepared by the United Nations Population Division. The distribution of fertility and mortality by age can be set by selecting from a list of model life tables.

HIV/AIDS PROJECTION METHODOLOGY

The HIV/AIDS projections are added to the demographic projections using a module called AIM. This module uses the projection of adult HIV prevalence prepared using the EPP model or the projection workbook. It also requires assumptions about the epidemiology of HIV, including the ratio of female to male prevalence, the distribution of infection by age, the distribution of the time from infection until AIDS death, and the effect of HIV on fertility.

The HIV/AIDS calculations are implemented by age and sex and are described fully in the AIM manual. A simplified

Abbreviations: AIM, AIDS Impact Model; ART, antiretroviral therapy; EPP, Estimation and Projection Package
version of the methodology is described here: the number of adults of age (a) and sex (s) infected with HIV in any year is simply the number of adults multiplied by the HIV prevalence:

\[\text{HIV}_{a,s,t} = \text{adult population}_{a,s,t} \times \text{prevalence}_{a,s,t} \]

The number of new infections each year is calculated as the number required to achieve the specified prevalence. Thus, new infections are calculated as the total number of infections expected in year t minus the number of infections surviving from the previous year. Surviving infections are the number of infections in the previous year minus deaths from AIDS or other causes occurring during the previous year:

\[\text{New HIV infections}_{a,s,t} = \text{HIV}_{a,s,t-1} - (\text{HIV}_{a,s,t-1} - \text{AIDS deaths}_{a,s,t-1} - \text{non-AIDS deaths to HIV+}_{a,s,t-1}) \]

AIDS deaths are a function of the number of new infections in previous years and the rate of progression from infection to death:

\[\text{AIDS deaths}_{a,s,t-1} = \sum_{i=0}^{20} (\text{New HIV infections}_{a,s,t-1} \times \text{Proportion that die from AIDS i years after infection}) \]

We assume HIV infected people are subject to the same hazard of mortality from causes other than AIDS as are people who are not infected.

Child infections occur when an HIV positive mother passes the infection to her child during gestation or birth or after birth through breastfeeding:

\[\text{New child infections}_t = \text{HIVWRA} \times \text{TFR}_t \times (1 - \text{TFRreduction}) \times \text{PTR}_t \]

where HIVWRA is the number of HIV positive women of reproductive age; TFR is total fertility rate; TFRreduction is the reduction in fertility caused by HIV infection; and PTR is the perinatal transmission rate.

Children progress from infection to AIDS and death in the same manner as described above for adults, although the progression rates are different.

Spectrum also calculates the number of orphans, including orphans as a result of AIDS in countries in sub-Saharan Africa and orphans due to all causes, maternal, paternal, and dual orphans by age and sex. The methodology has been confirmed by comparing the results with the findings of national surveys.

EPIDEMIOLOGICAL PATTERNS FOR HIV/AIDS

Progression from HIV infection to AIDS death

Recent reviews of the time from infection to death from AIDS in the absence of antiretroviral therapy (ART) are available for developing and developed countries. The progression period describes the amount of time that elapses from the time a person becomes infected with HIV until he or she dies from AIDS. AIM uses the cumulative distribution of the progression period. This distribution is defined as the cumulative proportion of people infected with HIV who will die from AIDS, by the number of years since infection. In line with these reviews, AIM has two default progression patterns available: fast (for developing countries) and slow (for industrialised countries). These patterns are based on the assumption that better health care leads to a somewhat longer survival period in industrialised countries. Thus, the median time from infection to death is assumed to be 9 years in developing countries (8.6 years for males and 9.4 years for females) and 11 years in industrialised countries. Survival times are assumed to follow a Weibull distribution in agreement with the available data. The pattern for developing countries is shown in fig 1.

Progression to AIDS death can be slowed by treatment with ART. In Spectrum, ART delays AIDS deaths for those who remain on it successfully. The survival of patients on ART depends on the quality of treatment and the patients' status when starting ARTs. Average survival on ART has been estimated to range 3–7 years. The default assumption is that 80% of those on ART continue with it and survive into the following year. With an increasing number of people receiving ART, further research will provide more specific information in the future.

Children who are infected perinatally generally progress to AIDS faster than adults. A UNAIDS review of available evidence suggests that the survival is best described by a rapid progression from infection to death for some children and much slower progression for others. The default pattern used in AIM is shown in fig 1.

Sex ratio of HIV prevalence

In generalised epidemics where most HIV transmission is through heterosexual contact there are usually many more male infections than female infections early in the epidemic but, over time, the number of female infections eventually exceeds the male infections. Spectrum uses a pattern based on data from population based surveys throughout Africa that indicate the ratio of female to male prevalence at different stages in the epidemic (see fig 2). The median female to male ratio is smaller in rural areas at 1.2 than in urban areas at 1.44, based on studies and national surveys in Benin, Burundi, Cameroon, Congo, Ethiopia, Kenya, Mali, Niger, Rwanda, Tanzania, Uganda, and Zambia. When weighted for rural (0.66) and urban (0.34) populations in sub-Saharan Africa, the weighted female to male ratio is 1.28. Together with studies in mixed urban and rural areas in Malawi, Zimbabwe, and South-Africa with female to male ratios of 1.22, 1.37, and 1.38, respectively, the overall female to male ratio in mature epidemics is set at 1.3. Data on the sex ratio of reported AIDS cases (from country reports to
WHO) have been used to describe the early phases of the epidemic because no population based prevalence studies are available in the first 5 years of an epidemic. The pattern used in Spectrum starts with the ratio of female to male prevalence at 0.23 in the first year of the epidemic and rises to 1.3 by the 15th year of the epidemic (see fig 3).

For concentrated epidemics the estimates of the ratio of female to male prevalence are based on trends in reported AIDS cases for nine countries in Latin America and Asia. In this pattern the ratio of female to male prevalence starts at 0:12 at the beginning of the epidemic and increases gradually to 0:63 by the 30th year of the epidemic. These patterns are shown in fig 3.

Age distribution of HIV infection
A default pattern of the distribution of HIV infections by age has been developed from population based surveys and reported AIDS cases (fig 4). Where population prevalence data are available for a particular country the observed pattern can be substituted for the default pattern. In countries with several successive population prevalence surveys the age distribution of infection shifts to older ages as the epidemic progresses. This is a result of the aging of those infected and changing patterns of incidence due to changes in sexual behaviour, particularly among young people. Where such data are available, Spectrum allows the age pattern of infection to change over time.

Mother to child transmission of HIV
The perinatal transmission rate is the percentage of babies born to HIV infected mothers who are infected themselves. Studies have found that this percentage ranges about 13–32% in industrialised countries and 25–45% in developing
Figure 4 Model pattern for age distribution of adult HIV prevalence.

Because at its core Spectrum is a demographic projection model, it can display the key indicators by age and sex. The results are available not only in tabular format but also graphically. This makes it easy to investigate the effects of different prevalence trends and varying levels of coverage of antiretroviral programs for adults and children on such demographic variables as life expectancy, population structure, and orphans.

LIMITATIONS

Some of the model patterns used in Spectrum are based on a small number of studies. For example, the distribution of the progression from infection to death for adults is based primarily on the cohort study from Masaka, Uganda. The progression pattern for children is based on a few studies but none that has followed cohorts for the full 15 years. The model patterns used in Spectrum have been developed and reviewed by the UNAIDS Reference Group on Estimates, Models and Projections. They represent the best we can do with available data, but that database is not as complete as we would like.

Spectrum estimates incidence from the prevalence trends provided by EPP or the estimation and projection workbooks. Because the pattern of prevalence by age and sex is usually assumed to be constant over time, the age specific patterns of incidence may not be reliable. Work is continuing to develop a procedure to vary the patterns of age specific prevalence over time in order to better represent patterns of incidence by age.

The default age distribution of HIV infection among injecting drug users or men who have sex with men is based on limited data and is likely to vary from country to country. However, currently there are few data available to develop improved distributions.

CONCLUSIONS

Spectrum is an easy to use model that works in multiple languages and has been used widely by national programs. It works smoothly with the models that project HIV prevalence and incorporates the work of the UNAIDS Reference Group on Model Epidemiological Patterns. The ease of use features are important because the focus of UNAIDS efforts is on training national teams to prepare their own estimates and projections with these tools.

ACKNOWLEDGEMENTS

This paper was written by JS. It benefited from contributions and comments from Peter Ghys of UNAIDS and Neff Walker of UNICEF. The Spectrum software, manuals, and training materials have been developed with funding from USAID. UNAIDS supported some modifications to add additional indicators of interest to national programs.

REFERENCES

