A case of a false positive result on a home HIV test kit obtained on the internet

There are two major reasons to diagnose asymptomatic HIV infection: to facilitate timely initiation of antiretroviral therapy, and to reduce the chance of onward transmission. A negative test offers an opportunity for preventive health promotion. All these aspects of testing require follow up by suitably trained personnel. We describe a case illustrating the hazards of self-testing for HIV.

A 31 year old British heterosexual man attended the genitourinary medicine clinic requesting an HIV test. His last sexual contact was 3 weeks earlier with a female partner of 3 months. He had recently learnt that she had had a previous male partner who had had African sexual partners and therefore may be at higher risk of having HIV infection.

He obtained a home HIV test kit (“Discreet” HIV Home Test Kit, Seville Marketing Ltd) from a Canadian based internet site and this result was positive. On further inquiry he gave a history of sore throat and swollen cervical lymph nodes 2 months previously, although these symptoms had largely resolved. He had never tested for HIV before and had no other significant risk factors.

We requested an HIV test on the patient; the result was negative. We repeated the test after 3 months and again it was negative, confirming that the patient was not infected at the time he performed the home HIV test. The current HIV screening test used by our centre uses both HIV antibody and p24 antigen detection and is known to detect HIV infection 3–12 weeks after infection. Given that he was now symptom free with HIV infection 3–12 weeks after infection.

We obtained a home HIV test kit (“Discreet” HIV Home Test Kit, Seville Marketing Ltd) from a Canadian based internet site and this result was positive. On further inquiry he gave a history of sore throat and swollen cervical lymph nodes 2 months previously, although these symptoms had largely resolved. He had never tested for HIV before and had no other significant risk factors.

We requested an HIV test on the patient; the result was negative. We repeated the test after 3 months and again it was negative, confirming that the patient was not infected at the time he performed the home HIV test. The current HIV screening test used by our centre uses both HIV antibody and p24 antigen detection and is known to detect HIV infection 3–12 weeks after infection. Given that he was now symptom free with HIV infection 3–12 weeks after infection.

We requested an HIV test on the patient; the result was negative. We repeated the test after 3 months and again it was negative, confirming that the patient was not infected at the time he performed the home HIV test. The current HIV screening test used by our centre uses both HIV antibody and p24 antigen detection and is known to detect HIV infection 3–12 weeks after infection. Given that he was now symptom free with HIV infection 3–12 weeks after infection.

We requested an HIV test on the patient; the result was negative. We repeated the test after 3 months and again it was negative, confirming that the patient was not infected at the time he performed the home HIV test. The current HIV screening test used by our centre uses both HIV antibody and p24 antigen detection and is known to detect HIV infection 3–12 weeks after infection. Given that he was now symptom free with HIV infection 3–12 weeks after infection.

We requested an HIV test on the patient; the result was negative. We repeated the test after 3 months and again it was negative, confirming that the patient was not infected at the time he performed the home HIV test. The current HIV screening test used by our centre uses both HIV antibody and p24 antigen detection and is known to detect HIV infection 3–12 weeks after infection. Given that he was now symptom free with HIV infection 3–12 weeks after infection.

We requested an HIV test on the patient; the result was negative. We repeated the test after 3 months and again it was negative, confirming that the patient was not infected at the time he performed the home HIV test. The current HIV screening test used by our centre uses both HIV antibody and p24 antigen detection and is known to detect HIV infection 3–12 weeks after infection. Given that he was now symptom free with HIV infection 3–12 weeks after infection.

We requested an HIV test on the patient; the result was negative. We repeated the test after 3 months and again it was negative, confirming that the patient was not infected at the time he performed the home HIV test. The current HIV screening test used by our centre uses both HIV antibody and p24 antigen detection and is known to detect HIV infection 3–12 weeks after infection. Given that he was now symptom free with HIV infection 3–12 weeks after infection.

We requested an HIV test on the patient; the result was negative. We repeated the test after 3 months and again it was negative, confirming that the patient was not infected at the time he performed the home HIV test. The current HIV screening test used by our centre uses both HIV antibody and p24 antigen detection and is known to detect HIV infection 3–12 weeks after infection. Given that he was now symptom free with HIV infection 3–12 weeks after infection.

We requested an HIV test on the patient; the result was negative. We repeated the test after 3 months and again it was negative, confirming that the patient was not infected at the time he performed the home HIV test. The current HIV screening test used by our centre uses both HIV antibody and p24 antigen detection and is known to detect HIV infection 3–12 weeks after infection. Given that he was now symptom free with HIV infection 3–12 weeks after infection.

We requested an HIV test on the patient; the result was negative. We repeated the test after 3 months and again it was negative, confirming that the patient was not infected at the time he performed the home HIV test. The current HIV screening test used by our centre uses both HIV antibody and p24 antigen detection and is known to detect HIV infection 3–12 weeks after infection. Given that he was now symptom free with HIV infection 3–12 weeks after infection.

We requested an HIV test on the patient; the result was negative. We repeated the test after 3 months and again it was negative, confirming that the patient was not infected at the time he performed the home HIV test. The current HIV screening test used by our centre uses both HIV antibody and p24 antigen detection and is known to detect HIV infection 3–12 weeks after infection. Given that he was now symptom free with HIV infection 3–12 weeks after infection.

We requested an HIV test on the patient; the result was negative. We repeated the test after 3 months and again it was negative, confirming that the patient was not infected at the time he performed the home HIV test. The current HIV screening test used by our centre uses both HIV antibody and p24 antigen detection and is known to detect HIV infection 3–12 weeks after infection. Given that he was now symptom free with HIV infection 3–12 weeks after infection.

We requested an HIV test on the patient; the result was negative. We repeated the test after 3 months and again it was negative, confirming that the patient was not infected at the time he performed the home HIV test. The current HIV screening test used by our centre uses both HIV antibody and p24 antigen detection and is known to detect HIV infection 3–12 weeks after infection. Given that he was now symptom free with HIV infection 3–12 weeks after infection.

We requested an HIV test on the patient; the result was negative. We repeated the test after 3 months and again it was negative, confirming that the patient was not infected at the time he performed the home HIV test. The current HIV screening test used by our centre uses both HIV antibody and p24 antigen detection and is known to detect HIV infection 3–12 weeks after infection. Given that he was now symptom free with HIV infection 3–12 weeks after infection.

We requested an HIV test on the patient; the result was negative. We repeated the test after 3 months and again it was negative, confirming that the patient was not infected at the time he performed the home HIV test. The current HIV screening test used by our centre uses both HIV antibody and p24 antigen detection and is known to detect HIV infection 3–12 weeks after infection. Given that he was now symptom free with HIV infection 3–12 weeks after infection.

We requested an HIV test on the patient; the result was negative. We repeated the test after 3 months and again it was negative, confirming that the patient was not infected at the time he performed the home HIV test. The current HIV screening test used by our centre uses both HIV antibody and p24 antigen detection and is known to detect HIV infection 3–12 weeks after infection. Given that he was now symptom free with HIV infection 3–12 weeks after infection.

We requested an HIV test on the patient; the result was negative. We repeated the test after 3 months and again it was negative, confirming that the patient was not infected at the time he performed the home HIV test. The current HIV screening test used by our centre uses both HIV antibody and p24 antigen detection and is known to detect HIV infection 3–12 weeks after infection. Given that he was now symptom free with HIV infection 3–12 weeks after infection.

We requested an HIV test on the patient; the result was negative. We repeated the test after 3 months and again it was negative, confirming that the patient was not infected at the time he performed the home HIV test. The current HIV screening test used by our centre uses both HIV antibody and p24 antigen detection and is known to detect HIV infection 3–12 weeks after infection. Given that he was now symptom free with HIV infection 3–12 weeks after infection.
single most important method of slowing the spread of HIV within populations, with mathematical modelling indicating that eliminating high infectivity in early infection has more effect than at any other disease stage. Thus, the diagnosis of PHI in at-risk individuals has considerable advantages in both individual and public health terms. These two cases demonstrate how easy it can be to disregard such patients as having fictitious HIV infection and are a gentle reminder that a negative antibody test does not necessarily exclude PHI. Healthcare providers must continue to be alert to the less common clinical manifestations of PHI, be aware of the particular assays used in their own laboratory, and because no combination of symptoms is 100% sensitive or specific, diagnostic procedure must be broad and inclusive.

D Pao, D McEllborough, M Fisher
Departments of Genitourinary Medicine and Virology, Brighton and Sussex University Hospitals NHS Trust, Brighton, East Sussex, BN2 5BE, UK
Correspondence to: David Pao, Department of Genitourinary Medicine, Brighton and Sussex University Hospitals NHS Trust, Brighton, East Sussex, BN2 5BE, UK; david.pao@bsuh.nhs.uk
doi: 10.1136/sti.2004.013300
Accepted for publication 3 November 2004

References

Complementary therapy and genital warts

Complementary therapy (CT) is now the second biggest growth industry in Europe (after IT). Up to 20% of the UK population visit a complementary therapist each year and as much as £5 billion is spent annually on such therapies. In view of this, it is important to continue to be alert to the less common clinical manifestations of PHI, be aware of the particular assays used in their own laboratory, and because no combination of symptoms is 100% sensitive or specific, diagnostic procedure must be broad and inclusive.

D Pao, D McEllborough, M Fisher
Departments of Genitourinary Medicine and Virology, Brighton and Sussex University Hospitals NHS Trust, Brighton, East Sussex, BN2 5BE, UK
Correspondence to: David Pao, Department of Genitourinary Medicine, Brighton and Sussex University Hospitals NHS Trust, Brighton, East Sussex, BN2 5BE, UK; david.pao@bsuh.nhs.uk
doi: 10.1136/sti.2004.013300
Accepted for publication 3 November 2004

References

Chlamydia trachomatis PCR positivity and inflammatory changes on cervical cytology

The presence of genital infection does not increase the likelihood of an inadequate Papanicolaou (Pap) test. Conversely, testing for Chlamydia trachomatis at the time of routine cytological screening presents an opportunity to detect asymptomatic genital tract infection. The EBV and HPV PCR test (Cytyc Corporation, Boxborough, MA, USA) used for the ThinPrep Pap test (Cytyc Corporation) can be used for detection by the polymerase chain reaction (PCR) of C. trachomatis. This presents an opportunity to study the correlation between the chlamydia result and the Pap test finding. We retrospectively reviewed all routine requests for chlamydia PCR on ThinPrep samples sent to our laboratory over a year. Data were collected on the woman’s age, chlamydia PCR result, result of genital tract cultures if performed on the same date, and Pap test result. On the Pap test result included presence or absence of an epithelial cell abnormality either high grade (HGEA) or low grade (LGEA), whether the Pap was inflammatory and the presence or absence of recognised pathogens. Cervical cultures if performed on the same date were tested for C. trachomatis using the automated Cobas Amplicor (Roche Diagnostics Systems) and the method by Bianco et al. Over the study period, 733 samples were received, of which 23 (3.1%) had C. trachomatis DNA detected by PCR. Comparison of the women with chlamydia infection with those without chlamydia infection is shown in table 4. There was no statistically significant difference in the prevalence of high or low grade epithelial abnormalities, recognition of other pathogens, or age of the women; however, 26% of women with chlamydia had an inflammatory Pap test compared to 9% of women without chlamydia (p < 0.01).

D Goldmeier
St Mary’s Hospital, London W2 1NY, UK
P Madden
Imperial College London, UK
C Lacey
Hull York Medical School, UK
K Legg, N Tamm, M Cowen
Imperial College London, UK
Correspondence to: D Goldmeier, St Mary’s Hospital, London W2 1NY, UK; david.goldmeier@st-marys.nhs.uk
doi: 10.1136/sti.2004.013912
Accepted for publication 9 November 2004

References
1 What Medicine. CAM on the up as more people look for an alternative (www.whatmedicine.co.uk/articles/CompMed.htm).

Chlamydia trachomatis PCR positivity and inflammatory changes on cervical cytology

The presence of genital infection does not increase the likelihood of an inadequate Papanicolaou (Pap) test. Conversely, testing for Chlamydia trachomatis at the time of routine cytological screening presents an opportunity to detect asymptomatic genital tract infection. The EBV and HPV PCR test (Cytyc Corporation, Boxborough, MA, USA) used for the ThinPrep Pap test (Cytyc Corporation) can be used for detection by the polymerase chain reaction (PCR) of C. trachomatis. This presents an opportunity to study the correlation between the chlamydia result and the Pap test finding. We retrospectively reviewed all routine requests for chlamydia PCR on ThinPrep samples sent to our laboratory over a year. Data were collected on the woman’s age, chlamydia PCR result, result of genital tract cultures if performed on the same date, and Pap test result. On the Pap test result included presence or absence of an epithelial cell abnormality either high grade (HGEA) or low grade (LGEA), whether the Pap was inflammatory and the presence or absence of recognised pathogens. Cervical cultures if performed on the same day were tested for C. trachomatis using the automated Cobas Amplicor (Roche Diagnostics Systems) and the method by Bianco et al. Over the study period, 733 samples were received, of which 23 (3.1%) had C. trachomatis DNA detected by PCR. Comparison of the women with chlamydia infection with those without chlamydia infection is shown in table 4. There was no statistically significant difference in the prevalence of high or low grade epithelial abnormalities, recognition of other pathogens, or age of the women; however, 26% of women with chlamydia had an inflammatory Pap test compared to 9% of women without chlamydia (p < 0.01).
The association of inflammation on Pap testing and chlamydial infection has been previously examined with variable methodologies and findings.1 We utilised the same sample (ThinPrep) for determining both the presence of inflammatory changes on Pap test and chlamydial infection and found a positive association between the two despite a low prevalence population. Our study confirms the feasibility of performing chlamydial PCR from liquid based cytology samples in a routine diagnostic setting. Testing for chlamydia should be considered in women with inflammatory Pap tests for which there is no other explanation.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Comparison of women with and without chlamydial infection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive C trachomatis</td>
</tr>
<tr>
<td>Median age</td>
<td>24 (range 19–40)</td>
</tr>
<tr>
<td>LGEA/HGEA</td>
<td>5 (22%)</td>
</tr>
<tr>
<td>Other pathogens</td>
<td>1 (17%)</td>
</tr>
<tr>
<td>Inflammation on Pap test</td>
<td>6 (26%)</td>
</tr>
</tbody>
</table>

LGEA, low grade epithelial abnormalities; HGEA, high grade epithelial abnormalities.

The shorter duration for diagnosing cardiovascular syphilis in the HIV seropositive group and 102 months (84 and 20 years (29 and 34) and that of HIV seronegative group was 31.5 months (27 and 53) in the HIV seronegative group. The mean age of the HIV seropositive group had aortic root dilatation (p<0.01). There was a theoretical possibility that aortic root dilatation could be a manifestation of HIV or opportunistic infections involving the heart. A parallel study done on cardiovascular involvement in HIV seropositive individuals from the same institute during the same time interval had revealed that none of the 61 non-syphilitic HIV seropositive individuals had aortic root dilatation, compared with 2 out of 14 with syphilis (p<0.01; paper in preparation).

The mean duration of diagnosing cardiovascular syphilis from the time of acquiring syphilis was 40 months (27 and 53) in the HIV seropositive group and 102 months (29 and 120) in the HIV seronegative group. The mean age of the HIV seropositive individuals who had cardiovascular syphilis was 31.5 years (29 and 34) and that of HIV seronegative individuals was 45.5 years (44 and 47). The shorter duration for diagnosing cardiovascular syphilis from the time of acquiring syphilis for the HIV seropositive group (40 months) compared with the HIV seronegative group (102 months) (p<0.005) could be explained by the fact that HIV hastens the progression to late syphilis, which might be due to an alteration to the immune system. It could also be possible that HIV infected individuals seek medical attention because of opportunistic infections, which might have led to the earlier diagnosis of cardiac lesions because the two individuals with aortic root dilatation were asymptomatic with regard to cardiac status. The difference in the clinical manifestation of cardiovascular syphilis between these two groups could not be explained at this point of time.

Cardiovascular syphilis in HIV infection: a case-control study at the Institute of Sexually Transmitted Diseases, Chennai, India

It is known that HIV co-infection with syphilis may accelerate the onset of gumma and neurosyphilis and increase their severity. However, this has only been reported for cardiovascular syphilis in two previous cases.1,2

This case-control study deals with a total of 14 HIV seropositive and 100 HIV 1 and 2 seronegative individuals with syphilis, who were seen in our clinic between June 2000 and May 2001. Of the 14 HIV seropositive individuals, 12 were reactive for VDRL (venereal disease research laboratory) and TPHA (Treponema pallidum haemagglutination assay) and two had primary syphilis confirmed by dark field examination for T pallidum. Of the 100 HIV seronegative individuals, 85 had reactive VDRL and TPHA and 15 had primary syphilis confirmed by dark field examination. The prevalence of cardiovascular syphilis in the HIV seropositive and seronegative groups was 14.3% and 2%, respectively (OR 8.2; 95% CI 1.1 to 61.5).

Two HIV seropositive individuals with cardiovascular syphilis had aortic root dilatation while the two HIV seronegative individuals had aortic aneurysm. The HIV seropositive individuals were asymptomatic with regard to cardiac status but one HIV seronegative individual had chest pain and the other was asymptomatic. None in the HIV seronegative group had aortic root dilatation (p<0.01). There was a theoretical possibility that aortic root dilatation could be a manifestation of HIV or opportunistic infections involving the heart. A parallel study done on cardiovascular involvement in HIV seropositive individuals from the same institute during the same time interval had revealed that none of the 61 non-syphilitic HIV seropositive individuals had aortic root dilatation, compared with 2 out of 14 with syphilis (p<0.01; paper in preparation).

The mean duration of diagnosing cardiovascular syphilis from the time of acquiring syphilis was 40 months (27 and 53) in the HIV seropositive group and 102 months (29 and 120) in the HIV seronegative group. The mean age of the HIV seropositive individuals who had cardiovascular syphilis was 31.5 years (29 and 34) and that of HIV seronegative individuals was 45.5 years (44 and 47). The shorter duration for diagnosing cardiovascular syphilis from the time of acquiring syphilis for the HIV seropositive group (40 months) compared with the HIV seronegative group (102 months) (p<0.005) could be explained by the fact that HIV hastens the progression to late syphilis, which might be due to an alteration to the immune system. It could also be possible that HIV infected individuals seek medical attention because of opportunistic infections, which might have led to the earlier diagnosis of cardiac lesions because the two individuals with aortic root dilatation were asymptomatic with regard to cardiac status. The difference in the clinical manifestation of cardiovascular syphilis between these two groups could not be explained at this point of time.

Contributions

MM designed the study, collected the data, interpreted the results, and analysed the results and statistics; SKG contributed to collecting data, interpretation of results and laboratory collaboration.

Acknowledgements

We thank M Muthu, retired Director and Professor of Anatomy, for his valuable guidance. We also thank D Muthukuman, Professor Emeritus of Cardiology, Madras Medical College, Chennai, for his active participation and guidance in performing and interpreting ECHO and ECG.

M Maharajan
Rajan Hospital, 29 B, T.B. Road, Madurai 625010, Tamil Nadu, India

Sampath Kumaaran
Department of STD, Chengalpattu Medical College Hospital, Chengalpattu, Tamil Nadu, India

Correspondence to: Dr M Maharajan, Rajan Hospital, 29 B, T. B. Road, Madurai – 625010, Tamil Nadu, India; dr.maharaj@rediffmail.com
doi: 10.1136/sti.2004.013599
Accepted for publication 12 April 2005

Antiretroviral therapy—alternative uses

Recently, while speaking to a patient from Nigeria I was very concerned to discover that she had been taking combivir for breast enhancement. On closer questioning it appeared that she had heard about this drug, passed to her in individual sachets with no information insert etc, via a friend. Her friend, knowing that my patient wished for larger breasts, had passed her the combivir to use on an as required basis for breast enhancement. My patient claims that the drug did work to enlarge her breasts.

The drugs were apparently prescribed by a doctor in Nigeria at the cost of about US$250 for six sachets and the pharmacist dispensing them had been asking why the girls were taking them. Apparently the sachets did not come with any leaflets or drug information inserts.

My patient and her friends appeared to be totally unaware of the fact that the combivir was for use in HIV therapy and were unaware of any potential side effects from the drug. It was only when my patient was surfing the web that she found out about the licensed use for combivir.

My patient, sadly, acquired HIV from a blood transfusion in Africa and on primary resistance testing showed very broad nucleoside reverse transcriptase inhibitors resistance and apparent full sensitivity to protease inhibitors and non-nucleoside reverse transcriptase inhibitors (NNRTIs). Resistance to
NNRTIs was only confirmed after weeks of unsuccessful therapy by further resistance testing.

My patient has alerted all her friends in Nigeria as to the real nature of combivir and advised them to stop using it for breast enhancement. She has also told me that she believes the doctor in Nigeria who prescribed these drugs may have had this activity terminated.

Because no one I have spoken to has come across this particular misuse of antiretroviral therapy I felt it was worth highlighting to a wider audience in the hope that such practises may be addressed.

Acknowledgements
This patient has agreed to publish details of her case to help prevent recurrent misuse of this drug.

S M Young
Department of Genitourinary Medicine, King’s Mill Hospital, Mansfield Road, Sutton in Ashfield, Nottinghamshire, NG17 4JL, UK;
Susan.Young@sfh-tr.nhs.uk

Sherwood Forest Hospitals NHS Trust Research and Development committee approval
doi: 10.1136/sti.2004.014415

Accepted for publication 21 December 2004

CORRECTION
The order of the authors of the paper by Götz et al on page 24 of the February 2005 issue (HM Götz et al. A prediction rule for selective screening of Chlamydia trachomatis infection. Sex Transm Infect 2005;81:24–30) were wrong. The order should have been as follows: HM Götz, JEAM van Bergen, IK Veldhuizen, J Broer, CJP A Hoebe, EW Steyerberg, AJJ Coenen, F de Groot, MJC Verhooren, DT van Schaik, and JH Richardus.