Epidemiology poster session 1: STI trends: HPV

P1-S1.51 PREVALENCE OF ANOGENITAL WARTS AMONG STD CLINIC PATIENTS-STD SURVEILLANCE NETWORK, USA, JANUARY 2010–SEPTEMBER 2010

doi:10.1136/sextrans-2011-050108.51

1E Lista, 2H Pugsley, 3I Tabidze, 4L Asbel, 5K Bernstein, 6H Kerani, 7J Schwettek, 8Longfellow, 9C Mettenbrink, 10S Guerry, 11J Zeniman, 12E Klinger, 13H Weinstock. CDC, Atlanta, USA; 2Virginia Department of Health, Richmond, USA; 3Chicago Department of Public Health, Chicago, USA; 4PHDP, Division of Disease Control, USA; 5San Francisco Department of Public Health San Francisco, USA; 6Public Health - Seattle & King Co, Seattle, USA; 7University of Alabama, Birmingham, USA; 8Louisiana Office of Public Health, Metairie, USA; 9Colorado Department of Health, Colorado, USA; 10LA County Dept of Public Health, Los Angeles, USA; 11Johns Hopkins School of Medicine, Baltimore, USA; 12NYC department of Health and mental hygiene, New York City, New York, USA

Background STD clinics routinely provide diagnostic and treatment services for anogenital warts. With the availability and increasing use of a highly effective quadrivalent vaccine against the HPV types associated with 90% of anogenital warts, the impact on patients presenting with anogenital warts to STD clinics may be significant. To be positioned to estimate the population-level impact of HPV vaccine on STD clinics, we conducted a baseline cross sectional analysis of patients with anogenital wart-related visits.

Methods We reviewed STD clinic data collected on patients seen by a clinician from 1 January 2010 to 30 September 2010 in 11 sites (58 clinics) participating in the STD Surveillance Network (SSuN)—Seattle, WA (1 clinic); San Francisco, CA (1); Los Angeles, CA (12); Denver, CO (1); Chicago, IL (5); New Orleans, LA (1); Birmingham, AL (1); Richmond, VA (3); Baltimore, MD (2); Philadelphia, PA (2); New York City, NY (9). SSuN uses a collaboratively developed protocol to collect demographic, risk behaviour, and clinical data on all patients with anogenital warts at participating STD clinics. The unit of analysis was unique patients; patients were considered to have anogenital warts if warts were identified at any visit.

Results Among SSuN sites, 5–13% (median 4%) of STD clinic patients had anogenital wart-related visits, with 5065 patients presenting for 6989 visits. Among patients with anogenital warts, 20% of the patients had multiple anogenital wart-related visits (range 2–6 visits). Overall, the median prevalence rate was 2% (range 1–5%) for women and 6% (range 4–22%) for men. By age and sex, median prevalence rates were highest among women aged 20–24 at 3% (range 1–7%) and among men aged 25–29 at 8% (range 5–25%). Among men who have sex with men (MSM), the median prevalence was 7% (range 4–18%) and among men who have sex with women only (MSW) it was 6% (range 3–23%). Of patients with anogenital warts, 40% were African American, 32% were white, 21% were Hispanic compared to all clinic patients who were 53% African American, 18% white, and 18% Hispanic. 59% received treatment and most treatment (97%) was provider applied.

Conclusions The prevalence of anogenital warts among women is low in STD clinics. It may thus be difficult to monitor the impact of the HPV vaccine in women in these settings. However, the higher prevalence in MSM and MSW suggest that these clinics may provide settings in which to monitor anogenital warts in men.

P1-S1.52 INCIDENCE OF ANAL HPV AND HPV-RELATED SEQUELAE IN HIV-INFECTED AND UNINFECTED US ADOLESCENTS

doi:10.1136/sextrans-2011-050108.52

1T Mullins, 2C Wilson, 3B Rudy, 4H Sucharew, 5J Kahn. Cincinnati Children’s Hospital Medical Center, Cincinnati, USA; 6University of Michigan, Ann Arbor, USA; 7University of Alabama, Birmingham, USA; 8University of California, Los Angeles, USA

Background Immunodeficiency related to HIV infection may place HIV-infected youth at increased risk of human papillomavirus (HPV) infection and anal dysplasia. Our objective was to determine incidence of anal HPV infection and related sequelae, and factors associated with these outcomes, among adolescents who are HIV-infected or -uninfected but at-risk.

Methods We analysed data from the Reaching for Excellence in Adolescent Care and Health Project. Adolescents age 12–18 years who were behaviourally HIV-infected (n=319) or -uninfected but at risk (n=177) were recruited at 15 US sites from 1996 to 1999. Incidence rates for anal HPV, high risk anal HPV, anogenital warts, and anal dysplasia were calculated using Poisson modelling. Factors associated with these outcomes were explored using Cox proportional hazards modelling.

Results Mean age at entry was 16.3 years, and mean follow-up time for detection of anal HPV infection was 22.4 months (SD 10.8). Most participants (76%) were female, and 70% were black non-Hispanic. HPV-infected women (vs -uninfected women) had higher incidence of anal HPV (50 vs 14 per 100 person-years; p=0.002), high risk anal HPV (12 vs 5.3 per 100 person-years; p=0.04), and anogenital warts (6.7 vs 1.6 per 100 person-years; p=0.002) but not anal dysplasia. Although incidence rates of these outcomes were consistently higher among HIV-infected vs -uninfected men, they did not achieve statistical significance. Factors associated with incident anal HPV, high risk anal HPV, anogenital warts, and anal dysplasia in women are shown in the Abstract P1-S1.52 table 1 below. No factors were associated with any outcome in men.

Abstract P1-S1.52 Table 1 Factors associated with incident anal HPV and HPV-related sequelae among women

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Risk Category</th>
<th>HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>None</td>
<td>1.00 (1.00)</td>
</tr>
<tr>
<td>None</td>
<td>Late (vs early) CDC disease stage</td>
<td>1.00 (1.00)</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>1.00 (1.00)</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>1.00 (1.00)</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>1.00 (1.00)</td>
</tr>
<tr>
<td>None</td>
<td>None</td>
<td>1.00 (1.00)</td>
</tr>
<tr>
<td>None</td>
<td>False</td>
<td>1.00 (1.00)</td>
</tr>
<tr>
<td>None</td>
<td>False</td>
<td>1.00 (1.00)</td>
</tr>
<tr>
<td>None</td>
<td>False</td>
<td>1.00 (1.00)</td>
</tr>
</tbody>
</table>

Conclusions HIV-infected women, when compared to HIV-uninfected women, had higher rates of HPV and related sequelae. Because HIV-infected youth are at increased risk of HPV and related disease, enhanced HPV prevention efforts, such as vaccination, are warranted for this group.

P1-S1.53 ASSESSING HPV GENOTYPE PREVALENCE IN AUSTRALIAN WOMEN BY INDIGENOUS ETHNICITY PRE-VACCINATION

doi:10.1136/sextrans-2011-050108.53

1-2S Garland, 1,4,5,6 L M Brotherton, 3M I Stevens, 1,2,4,5 N I Tabrizi, 6E Condon, P McIntyre, 7D Smith. on behalf of the WHINURS Women, HPV, Indigenous Non-indigenous, Urban, Rural Study Group. 1Department of Microbiology and Infectious Diseases, The Royal Women’s Hospital, Melbourne, Australia; 2Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Australia; 3Murdoch Children’s Research Institute, Victoria; 4Victorian Cytology Service; 5NCRIS, University of Sydney; 6Menzies Centre, Darwin; 7Pathwest, Perth, Western Australia

Background A government funded HPV vaccination program was implemented across Australia from April 2007. The aim of this study was to ascertain whether HPV genotype prevalence, prior to
vaccination, differed significantly by Indigenous status, age group, Pap cytology status or area of residence.

Methods We used women attending for routine Pap smear, (April 2005–February 2008), as the sampling frame with 34 sites across Australia selected to include adequate numbers of Indigenous and remote-dwelling women. The final recruitment of 2620 (mean 33, range 15–66 years) included 26% (684) indigenous. DNA extracts from Thin-Prep specimens were screened by HPV AMPLICOR (Roche) and in-house HPV PCR/ELISA, with positives genotyped by LINEAR ARRAY HPV genotyping test (Roche).

Results The overall prevalence of HPV infection was 39% (95% CI—56.8 to 40.6), with high risk (HR) HPV detected in 26% (95% CI—24.8 to 28.2). Single infections were detected in 17% (95% CI—15.8 to 18.7). While multiple infections were common overall at 22%, there was no difference in proportion of multiple HPV carriage between indigenous and non-indigenous (58% of HPV positive non-Indigenous women and 56% of HPV positive Indigenous women had multiple types detected). As with single infections, multiple type infections were less prevalent with increasing age. The six most common genotypes were—HPV 16 (23%), HPV 51 (5.1%), HPV 53 (4.7%), HPV 52 (4.3%), HPV 59 (3.9%) and HPV 66 (3.8%). Age-specific HPV prevalence rates were similar for Indigenous and non-Indigenous women aged ≥50, but higher for Indigenous women aged 31–40, particularly for non-vaccine targeted HR-HPV genotypes. By HPV clades for this age group, indigenous women were significantly more likely to have α 7 HPV (45, 39, 59, 68 or 70 without 18) OR 1.9 (1.1 to 3.3) p<0.05) or α 5 group (HPV51, 26, 69, 82) with OR 2.1 (1.1 to 4.3) p=0.02). There was no significant association between Indigenous status and detection of HPV from the α 9 clade (31, 33, 35, 52, 58, 67), with or without HPV 16. Overall, HR-HPV prevalence increased from 21% in women with normal cytology, to 31% in those with high-grade lesions/cancer.

Conclusions Cross-sectional prevalence of HR-HPV was high in Australian women, with vaccine preventable genotypes observed in 13% of all women (25% in <25 year olds). Vaccination should significantly reduce vaccine related HPV infection and disease in Australian women, irrespective of indigenous status or area of residence.

Results Prevalence of cervical infection with any high-risk HPV type examined was 13.1% (CI—12.1 to 14.0), prevalence of infection with HPV16 only was 3.5% (CI—3.0 to 4.1) and prevalence of infection with HPV18 was 1.0 (CI—0.7 to 1.3). The corresponding age specific prevalence estimates decreased with age and were the highest among 20–24 years old women—26.0% (CI 22.4 to 29.5), 9.2% (CI 6.8 to 11.5) and 1.9% (CI 0.8 to 3.0), respectively. Overall prevalence of infection with any high-risk HPV type examined was the lowest among participants without evidence of cervical disease 10.8% (CI 9.9 to 11.5) and increased with the severity of cervical disease to 72.5% (CI 61.7 to 83.3) in women with low grade squamous intraepithelial lesion (LSIL) and 83.7% (CI 72.1 to 95.2) in women with high grade squamous intraepithelial lesion (HSIL). Corresponding HPV16 prevalence estimates were 2.5% (CI 2.0 to 3.0), 26.1 (CI 15.5 to 36.7) and 41.9% (CI 26.5 to 57.2), and corresponding HPV18 prevalence estimates were 0.9% (CI 0.6 to 1.2), 7.3% (CI 1.0 to 15.5) and 7.0% (CI 0.0 to 14.9).

Conclusions Our results provide baseline high-risk HPV types prevalence estimates and will inform future monitoring of the impact of HPV vaccination program, including possible replacement of non-vaccine HPV types and design of effective cervical cancer screening strategies.

Background Previously we observed elevated HPV seroprevalence in men who had sex with men (MSM) and men who had sex with men and women (MSMW) compared to men who had sex with women (MSW). We hypothesise that the higher seroprevalence is associated with HPV infection at multiple anatomic sites, and the presence of mucosal epithelial infection as opposed to keratinised epithelial infection. We assessed associations between HPV sero-positivity and prevalent HPV infection at anal canal and external genitalia in men to test the hypothesis.

Methods Enrolment data for 1668 men, including 1474 MSW, 83 MSM and 106 MSMW, were analysed. HPV L1 VLP-based ELISA was used for serum antibody testing and Linear Array for HPV DNA testing. Associations were estimated for HPV 6 and 16, respectively, using logistic regression. MSM and MSMW were combined to form the group MSM.

Results Overall HPV 6 and 16 seroprevalence was 9.9% and 14.1%. HPV 6 and 16 DNA was present in 2.2% and 2.7% of anal samples, and 6.4% and 7.3% of genital samples. Seroprevalence of HPV 6 and 16 was significantly higher in MSM compared to MSW (32.3 vs 6.9%; 34.4 vs 11.5%). Similarly, HPV 6 and 16 DNA was more frequently detected in anal samples (9.5 vs 12.2%; 9.0 vs 1.8%) and genital samples (7.4 vs 6.2%; 9.0 vs 7.1%) of MSM than MSW. Men with simultaneous anal and genital HPV infection (AOR—9.20 and 6.79) or anal HPV infection alone (AOR—19.93 and 3.19) were significantly more likely to be HPV 6 and 16 seropositive. There was no association of seropositivity with prevalent genital HPV 6 or 16 infection. Strong positive associations were detected in MSM and MSMW who were anal HPV 6 positive, regardless of coinfection with genital HPV 6. In contrast, no association was observed among MSW with anal HPV 16, with or without genital coinfection.