P4-S1.04
11C-Choline small animal PET in experimental Chlamydia muridarum infection
doi:10.1136/sextrans-2011-050108.506

1A Marangoni, 7C Nanni, 7C Quarta, 8R Aldini, 9M Donati, 10P Nardini, 7C Boschi, 2S Fanti, 9R Cevenini. 1University of Bologna, Bologna, Italy; 2Azienda Ospedaliero-Universitaria di Bologna, Policlinico S.Orsola-Malpighi, Italy

Objectives Genital tract infection of female mice with Chlamydia muridarum closely mimics C. trachomatis acute genital tract infection in women. Aim of this study was to assess the predictivity of 11C-Choline Small Animal PET for the identification of reactive animals and their follow-up at several times after vaginal challenge.

Methods Chlamydiae were grown in LLC-MK2 cells, cultivated in Eagle’s MEM and elementary bodies were purified from cells by sucrose-gradients density centrifugation. Animals used in this study were 10 female Balb/c mice, 6–8 weeks old. All the animals received 2.5 mg of medroxyprogesterone acetate intramuscular nine and 2 days prior the infection. Nine mice were infected by placing 106 IFUs of C. muridarum into the vaginal vault. Infection was induced under Ketamine anaesthesia. As control, one animal was challenged with SPC. At 5, 10 and 20 days after challenge mice underwent a 11C-Choline PET, as follows: each animal was anaesthetised with SevoFlouran 3–5% oxygen 11 l/min and was injected with approximately 20 MBq of 11C-Choline, via the tail vein. The residual dose was measured to verify the effective dose injected. The animal was subsequently placed on the scanner bed in the prone position, after an uptake time of 5 min. Images were acquired with a small animal PET tomograph (GE, eXplore Vista DR) for a total acquisition time of 20 min. As the axial field of view was 4 cm, one bed position was sufficient to cover the whole body. Images were reconstructed iteratively (OSEM 2D) and read in three planes (axial, sagittal and coronal). The scan was considered positive if areas of increased Choline uptake were present at sites consistent with the site of inamination. The standard uptake value (SUV) was calculated by measuring the concentration of the labelled tracer in the region of interest and correcting it for mice body weight and injected dose. Infection was monitored by culturing cervical-vaginal secretions 6, 11 and 21 days after infection.

Results At 5 days, the mean vaginal SUV (±SD) of the cases was 0.83±0.39, whereas the control showed a value of 0.278. At 10 and 20 days, SUVs of the cases were 0.94±0.83, 0.39, whereas the control was 0.299 and 0.302, respectively. SUV of the control was 0.278. At 10 and 20 days, SUVs of the cases were 0.94±0.83, 0.39, whereas the control was 0.299 and 0.302, respectively. C. muridarum was isolated from all the infected animals during the study period.

Conclusions These preliminary data indicate that 11C-Choline PET could be a promising technique to in vivo evaluate inflammatory response to Chlamydia infection.

P4-S1.05
Polymerase Chain Reaction-Based Typing of PenA Genes Exhibiting Elevated MIC Values to Cephalosporins in Isolates of Neisseria Gonorrhoeae
doi:10.1136/sextrans-2011-050108.507

1D Trees, 2M Burroughs, 3S Harris, 4S Johnson. 1Centers for Disease Control and Prevention, Atlanta, USA; 2CDC, USA

Objective Develop a PCR based assays for rapid analysis of isolates that exhibit elevated MIC values to penicillin and cephalosporins (MICs of 0.015–0.06 ug/ml to ceftriaxone). These primers were designed to detect mosaic and nonmosaic sequences in the penA gene.

Methods Two sets of primer pairs were generated that allowed the detection of mosaic-type and nonmosaic-type penA gene sequences in isolates of N. gonorrhoeae that exhibited elevated MIC values to three cephalosporins. Additional primer sets were generated that detected the presence of an inserted aspartic acid residue in nonmosaic penA genes involved in resistance and to detect base substitutions to distinguish between different mosaic penA genes. DNA sequences were determined as necessary by standard sequencing or pyrosequencing.

Results PCR analysis of 28 isolates, exhibiting elevated MIC values to cephalosporins and from different geographic areas, that used these primer sets in combination allowed for the detection of mosaic penA genes in 12 isolates. The remaining isolates possessed nonmosaic genes. Not all of the 12 isolates contained complete mosaic-type sequences with five of the isolates indicating mosaic sequences present in the 5’ region of the penA gene with wild type DNA sequence replacing the last 120 bp of the gene. Another isolate contained nonmosaic penA sequences with an aspartic acid insertion (after aa 345) in the 5’ region of the gene but mosaic sequences in the 3’ end. Finally, mosaic-related sequences were detected by PCR and confirmed by DNA sequencing in the last 106 base pairs of the penA gene of a penicillin sensitive strain isolated prior to 1976.

Conclusion PCR can be used to easily detect the presence of mosaic penA genes in isolates of N. gonorrhoeae. This study has shown the 5’ region of the gene may contain mosaic, partial mosaic and nonmosaic-type sequences and that mosaic-type sequence has been encountered in the 5’ region of penA in a sensitive strain. We have also observed isolates with increased MICs to cephalosporins that do not contain mosaic sequences. Finally, isolates that possess mosaic penA genes have been detected in dispersed geographic regions in the US, which is of concern due to the evidence mosaic-type penA alleles are involved in the process of increasing gonococcal MICs to cephalosporins.