demographics; barriers of use for available STI POCTs; characteristics of an ideal POCT, including prioritising pathogens for targets; and building your own POCT. Practicing clinicians and academic experts from two venues, STI-related international conference attendees and U.S. STD clinic clinicians, were invited to participate in the clinician survey. Professionals from industry in the STI diagnostic field were invited to participate in the industry survey. χ² test and conditional logistical regression were used for data analysis.

Results Clinician survey participants (n=218) identified “the time frame required” (59.9%), “complexity” (51.2%), and “interruption of work flow” (50.3%) as the top three barriers making it difficult to use STI POCTs, while the industry survey participants (n=107) identified “complexity” (65.4%), “unreliability” (55.3%), and “difficulty in reading results” (54.6%) as the top three barriers. Significant differences in barriers named in the two surveys included “complexity”, “the time frame required”, “laboratory driven”, “difficulty in reading results”, and “unreliability”. Participants from both surveys ranked C. trachomatis as the top priority organism chosen for a new POCT (clinician: 62%, industry: 59%, p<0.05), followed by a test that would diagnose early seroconversion for HIV (clinician: 14%, industry: 52%, p<0.05). Sensitivity was always the most important attribute to be considered for a new STI POCT by both participant groups. Participants of the clinician group chose cost as the second priority attribute, while those of the industry group chose specificity as the second priority.

Conclusions We identified differences in the perceptions regarding barriers and ideal attributes for STI POCTs between frontline clinical providers and industry personnel. Tailored training is warranted to inform scientists, biomedical engineers, and other industry experts about characteristics that clinicians desire for STI POCTs.

Basic sciences oral session 1—Genomics, replication and pathogenesis

04-S1.01 RAPID ARRAY-BASED MULTILOCUS GENOTYPING OF CHLAMYDIA TRACHOMATIS: THE EASY AND ECONOMICAL ALTERNATIVE

1B Hermann, 1L Christerson, 2A Ruettger, 3K Gravningen, 4H Eichrt, 5K Sachse. 1Uppsala University Uppsala, Sweden; 2Friedrich-Loeffler-Institut Federal Research Institute for Animal Health Jena, Germany; 3University Hospital of Northern Norway, Tromsø, Norway; 4Alere Technologies GmbH Jena, Germany

Background Genotyping of Chlamydia trachomatis (C.) is an important technique to understand its epidemiology. Methods such as DNA sequencing of the ompA gene or multilocus sequence typing (MLST), either offer limited epidemiological resolution, or are laborious and expensive, or both. Here we present a microarray-based method for genotyping of C trachomatis.

Methods The database for our high-resolution MLST system (http://mlstdb.bmc.uu.se/) was used to design a multilocus typing (MLT) DNA microarray based on the ArrayStrip format (Alere Technologies, Jena, Germany). In total, the present MLT array version includes 210 different oligonucleotide probes covering the discriminatory variation in the highly variable, but stable, MLST target regions (hctB, CT058, CT144, CT172 and ppB), as well as 61 probes for ompA. Validation of the array was done by examining 80 clinical C. trachomatis specimens from unselected adolescents and compare with results from MLST and ompA-based serotyping.

Results Successful typing was achieved for 78 (97%) of the specimens. Processing of the obtained hybridisation patterns resulted in 17 different MLT array groups, whereas sequence-based examination led to 19 MLST genotypes and seven ompA genotypes. Thus, the MLT microarray assay provided 2.4 times higher resolution than ompA and separated the commonly predominating ompA E/Bour genotype into seven genotypes. The MLT array showed 100% specificity. Compared to MLST analysis, the equipment needed for the MLT array is about 75% cheaper, consumables are 50% cheaper, analysis can be completed within one working day, instead of 3–4 days, and data analysis is easily conducted in high throughput conditions using up to 96 wells, while the practical operations are easy-to-handle and do not require specially trained personnel.

Conclusion This novel MLT array is a promising alternative for high resolution and high throughput typing of C. trachomatis and will facilitate molecular epidemiology studies of chlamydia infections.