diverse towns in four Australian states (total population 72,000 16–29-year-olds). To date, 27 towns have been randomised (13 intervention, 14 control). Intervention and control towns are similar: baseline chlamydia prevalence (5.8%, 95% CI 4.4 to 7.5% vs 5%, 95% CI 3.9 to 6.3%, individual response rate 63%); past chlamydia testing rate in 16–29-year-olds (6.1%, 95% CI 5.8 to 6.4% vs 5.8%, 5.6 to 6%). After 3 months of the intervention in the first two towns the chlamydia testing rate was 10.9% (95% CI 10.1% to 11.7%; 691 people tested), a 160% increase compared with the testing rate (4.1%) in the year before the intervention.

Conclusions Our high recruitment rate shows that Australian GPs are willing to test for chlamydia. The baseline data show a high prevalence of chlamydia among young adults in the study towns. While testing rates are increasing, ongoing work is needed to get coverage up to levels that might reduce prevalence in intervention towns.

Aim To compare HPV vaccination outcomes and prevalence of risk factors, associated with HPV acquisition and cervical cancer development, in young women attending GUM clinics with national data.

Method An anonymous questionnaire was given to 13–19 year-old women attending 19 participating GUM clinics from March to August 2011. Data were analysed using multivariate linear regression in SPSS.

Results 2247 questionnaires were completed (median respondent age 17). Compared to national data, respondents were more likely to be smokers (48% vs 12% of 15 year-olds), have had coitarche aged <16 (52% vs 26%), had an STI previously (29% vs 15% for <16 coitarche) or not be in education, employment or training (NEET) (8% vs 2% of 16 year-olds). Of the 74% offered the vaccination, 81% accepted. Of those accepting the vaccination, 81% had all three injections. Of those who had <3 doses, 65% reported no active recall. Overall, 47% of all respondents had received all three vaccine doses. Completion rates were lower in London, non-white ethnicities, 17–19 year-olds, NEETs, smokers and those with previous Chlamydia (all p<0.0001).

Discussion The study population exhibited lower HPV vaccination completion rates than the national average, demonstrating that GUM attendees are a harder-to-reach group through current FCT delivery programmes. This population also exhibited higher rates of risk factors for HPV acquisition, highlighting GUM attendees as a priority target group for HPV vaccination. This data demonstrates the potential role of GUM clinics as supplementary HPV vaccination delivery sites, in targeting at-risk young women with low uptake of the HPV vaccination.

Aims To determine whether SMS follow-up of patients who DNA booked GUM appointments improves subsequent re-attendance rates and to assess the impact of inclusion of a health promotional message in re-attendance rates.

Methods This prospective randomised control study included all patients aged 16–30 yrs who DNA a booked GUM appointment during the 6 month study period. Subjects were randomised to: (1) no intervention; (2) SMS notification of the defaulted appointment and invitation to attend clinic; (3) as per arm 2 including a health promotional message about Chlamydia. All SMS were sent 1 week after the defaulted appointment. Patients re-booking or attending prior to this time were excluded. The proportion of patients who re-attended within 4 weeks of the defaulted appointment were compared using the Fisher’s Exact test.

Results 252 patients were included. 4.5% (4/88) in the control group re-attended clinic compared to 8.2% (7/85) receiving a text reminder (p=0.36) and 15.2% (12/79) when a health promotional message (p=0.082). None of those re-attending in the control group were diagnosed with an STI compared to 29% in group 2 (Gonorrhoea and Chlamydia) and 25% in group 3 (2 X Chlamydia 1 Herpes).