determine the frequency of detection of M. genitalium and to investigate causal relationship between M. genitalium and cervicitis.

Methods Two hundred women who attended gynecologic clinics were recruited. Mucopurulent cervicitis was defined as presence of either visible yellow mucus or presence of > 30PMNL/1000 X microscopic field on gramme stain smear of cervical mucus. First void urine (FVU), three endocervical swabs (ECS) were collected from the study group and control group. All the samples were tested by PCR amplification for presence of M. genitalium by targeting MgPa gene as described previously. Samples were also subjected to culture for other genital Mycoplasmas and PCR amplification for Chlamydia trachomatis and Neisseria gonorrhoeae.

Results Mycoplasma genitalium was found in 6% from ECS and 5% from Urine of women with Cervicitis and overall M. genitalium was detected in 11% of women and 1% from Controls (P < 0.05). Disordered proliferative endometrium was observed in 4 of the M. genitalium positive cases. All the patients who were positive for Chlamydia trachomatis (5%) and Mycoplasma hominis(7%) and Ureaplasma urealyticum were excluded from the study. Prior diagnosis of PID was present in 7% of the M. genitalium positive cases. In the control group, 4% of women were positive for Neisseria gonorrhoeae, 4% for Chlamydia trachomatis and 7% for Mycoplasma genitalium.

Conclusions The study suggests association of M. genitalium infection and cervicitis and this microorganism should be routinely screened in patients of cervicitis.

P3.296 PREVALENCE OF CHLAMYDIAL INFECTIONS WITHIN EIGHT SOUTH AFRICAN PROVINCES (2006–2011)

F Radebe, V Maseko, I Basson, G de Gita, S Takouva, D A Lewis. Centre for HIV & STIs, NICD/NHLS, Johannesburg, South Africa

Background The microbiological surveillance was undertaken in eight provinces of South Africa during 2006–2011 to determine the aetiology of the male urethritis syndrome (MUS), vaginal discharge syndrome (VDS) and genital ulcer syndrome (GUS) and the prevalence of HIV, HSV-2 and syphilis.

Methods 1361 MUS, 1691 VDS and 465 GUS cases were consecutively recruited in eight South African provinces (2006–2011). Laboratory-based diagnostic methods included nucleic acid amplification to detect Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma genitalium, Trichomonas vaginalis, Herpes Simplex Virus 2, Haemophilus ducreyi, Treponema pallidum and Chlamydia trachomatis serovars L1–3.

Results Overall, 202 (14.9%) MUS and 240 (14.2%) VDS cases were positive for C. trachomatis while 6 (1.3%) GUS cases were positive for C. trachomatis serovars L1–3. The highest prevalence of C. trachomatis was 21.1% in Gauteng among men and 19.4% in women. The prevalence in other provinces were: Mpumalanga (men 18.4%; women 17.4%), Limpopo (men 14.0%; women 16.7%), Eastern Cape (men 16.4%; women 13.5%), Western Cape (men 13.5%; women 14.9%), North West (men 10.3%; women 11.1%), Free State (men 8.0%; women 9.8%) and Northern Cape (men 8.1%; women 9.6%). C. trachomatis serovars L1–3 prevalence was 3.2% in the Free State, 2.8% in Mpumalanga and 0.7% in Gauteng. No C. trachomatis serovars L1–3 were detected in other five provinces.

Conclusions The prevalence of C. trachomatis infection was high in this population and remains an important cause of genital infection in South Africa particularly in men. This may fuel the HIV epidemic which was high in most of the provinces in this study.