P1.011 WHOLE GENOME SEQUENCE OF THE TREPONEMA PALLIDUM SSP ENDEMICUM, STRAIN BOSNIA A

1B Staudo, 2M Strouhl, 1M Zobanikova, 1D Čejková, 1L Giacani, 1A Centurion-Lara, 1L L Fulton, 1L Chen, 2G M Weinstock, 2D Smajš, 3Masaryk University Brno, Brno, Czech Republic; 1University of Washington, Seattle, WA, United States; 2Washington University in St Louis, Saint Louis, MO, United States

Background T. pallidum ssp. endemicum (TEN) is the causative agent of endemic syphilis (bejel). The TEN Bosn A strain was isolated in 1950 from a patient’s penile lesion in northeastern Bosnia.

Methods To define genetic differences between TEN Bosn A and other pathogenic treponemes including the agents of syphilis (T. pallidum ssp. pallidum, TPA) and yaws (T. pallidum ssp. pertenue, TPE), a high quality sequence of the Bosn A genome was determined using 454-pyrosequencing, Illumina, SOLiD and traditional Sanger sequencing. Combined average coverage of these sequencing methods was greater than 340x.

Results Compared to other TPA and TPE treponemes, the genome of Bosn A (1,137,653 bp) was smaller in size (~2 kb) but structurally almost identical to other TPA and TPE strains. The Bosn A genome clustered with TPE strains (nucleotide identity excluding indels ranged between 99.91 – 99.94%) while TPA strains were more distantly related (99.79 – 99.82%). More than 400 Bosn A-specific nt changes (i.e. sequences different from TPA and TEN genomes) were found as the result of our analysis.

Conclusions The Bosn A genome showed similar genetic characteristics as other TPA and TPE strains. Genetic differences found between TPA strains and Bosn A genome could be used for identification of potential virulence factors of syphilis treponemes. Moreover, genetic changes specific for Bosn A genome could help develop molecular diagnostic tests for endemic syphilis.

P1.012 URINARY CYTOKINE PROFILES IN NON-SPECIFIC, MYCOPLASMA GENITALIUM AND CHLAMYDIA TRACHOMATIS URETHRITIS

1M J Pond, 2A V Nori, 3Y Hou, 3S Patel, 3K G Lang, 1R L Allen, 1P D Butcher, 1S T Sadiq, 1Centre for infection and immunity, Division of Clinical Sciences, St George’s University of London, London, UK; 3Division of Biomedical Sciences, St George’s University of London, London, UK; 2Department of Genitourinary & HIV Medicine, St George’s Healthcare NHS Trust, London, UK

Background Previously, we demonstrated that urinary white cell count increases in proportion to pathogen load in cases of urethritis caused by Mycoplasma genitalium but not Chlamydia trachomatis. We further investigated urethritis pathogenesis caused by these organisms by comparing concentrations of 23 cytokines present within first void urine (FUU) specimens of male urethritis cases.

Methods FUUs from 52 symptomatic male patients (all underwent Gram stain urethral smear) were collected and patients stratified into those with non-specific urethritis (n = 12), M. genitalium urethritis (n = 13), C. trachomatis urethritis (n = 14) and non-urethritis controls (n = 13). Cytokine measurements from FUUs specimens were obtained using a Human 30-plex Lumexx assay. Concentrations were obtained for 25 of the 30 cytokines analysed and compared between the four groups using multivariate ANOVA.

Results Overall, there was a significant difference in urinary cytokine profile between groups (p = 0.042). For individual cytokines, clinical group was associated with differences in concentrations of IL-1β (p = 0.007), GCSF (p = 0.042), CCL11 (p = 0.012), MIP-1α (p = 0.029), TNF-α (p = 0.026), IL-7 (p = 0.029), EGF (p = 0.030), VEGF (p = 0.049) and IFNα (p = 0.008). When compared with uninfected non-urethritis controls, cytokine concentrations in M. genitalium samples, were increased for IL-1β (p = 0.017), GCSF (p = 0.010) but decreased for EGF (p = 0.017); C. trachomatis samples, were decreased for EGF (p = 0.049); and in non-specific urethritis samples, were increased for CCL5 (p = 0.049), IL-1β (p = 0.05), IL-1RA (p = 0.033) and decreased for EGF (p = 0.032). No significant differences were demonstrated in cytokine concentrations between C. trachomatis and M. genitalium groups.

Conclusion The increased levels of pro-inflammatory cytokines present in the urethritis groups when compared to non-urethritis controls reflect the acute inflammatory state. The data suggests that M. genitalium genital infection may be associated with a discrete mucosal immunological profile potentially explaining the link between cellular inflammatory response and bacterial load, previously observed.
Poster presentations

the Witwatersrand, Johannesburg, South Africa; 3Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa

Background Acyclovir (ACV) is the first-line treatment for symptomatic primary and recurrent genital herpes in South Africa. Resistance to ACV is mainly due to mutations in the HSV-2 viral UL23 gene that codes for thymidine kinase (TK), resulting in an inability for the drug to inhibit viral replication. The objectives of this study were to obtain genotypic data on the frequency of HSV-2 TK resistance mutations and natural polymorphism as well as to assess the prevalence of ACV-resistant HSV-2 among participants in the genital ulcer aetiological studies conducted between 2007 and 2011.

Methods We amplified and fully sequenced the UL23 gene of 254 HSV-2 positive specimens obtained from participants in genital ulcer aetiological studies conducted between 2007 and 2011 in Gauteng Province, South Africa. Additionally, intratypic differences between the HSV-2 were determined based on the number of reiter- ated sequences located in the non-coding regions of the US1 and US12 genes of HSV-2.

Results We identified 65 single and/or double nucleotide mutations in the UL23 genes analysed, that resulted in 30 silent mutations and 32 amino acid changes. 41% of these amino acid changes were due to natural polymorphism. In addition, we identified 19 unknown amino acid changes in 30 samples that have not been described before. All unknown mutations detected were outside the TK resistance “hotspots”, which are known as pyrophosphorolysis. In addition to viral mutants isolated in vitro, we have shown some artificial mutants of HSV-2 positive specimens obtained from participants in genital ulcer aetiological studies conducted between 2007 and 2011 in Gauteng Province, South Africa. Additionally, intratypic differences between the HSV-2 were determined based on the number of reiter- ated sequences located in the non-coding regions of the US1 and US12 genes of HSV-2, revealed a high degree of HSV-2 heterogeneity in this population.

Conclusions No evidence was found of known ACV resistance mutations in HSV-2 following the addition of ACV as first-line therapy for genital ulceration in South Africa. Genotyping of HSV-2, based on the length of reiterated sequences in the US1 and US12 genes of HSV-2, showed high resistance to penicillin.

Background In India, knowledge regarding N. gonorrhoeae antimicrobial resistance profiling is limited, and data concerning genetic characteristics of N. gonorrhoeae is also lacking. Herein, we investigated the genetic resistance determinants for various antimicrobials used against N. gonorrhoeae isolated in Delhi, India. Various studies have shown that this resistance towards antimicrobials could be either plasmid or chromosomal mediated involving mutations in various genes.

Methods Molecular basis of plasmid and chromosomal mediated antimicrobial resistance was analysed by amplifying and sequencing the most target genes, pen A and por B, of N. gonorrhoeae. Attempts have been made to in-silico model the structure of mutant PenA to understand how mutations in these genes affect the drug binding. A PCR assay was also carried out to analyse the penicillinase producing N. gonorrhoeae (PPNG).

Results Out of the 40 clinical isolates of N. gonorrhoeae studied, which were resistant to various antimicrobials, twenty eight isolates showed high resistance to penicillin (3–32µg/ml). These resistant isolates were PPNG positive (70%; 28/40) and predominantly harboured the African type of PPNG plasmid. Only two isolates carried the Asian type of plasmid. Mutations were also observed in penA and porB genes which correlate their effects on drug resistance. Through in silico modelling studies, we were able to even show that a single point mutation at G452S in penA gene changed the susceptibility of N. gonorrhoeae towards penicillin and tetracycline.

Conclusions This study clearly shows a cumulative effect of increasing mutations with subsequent increase in resistance towards various antimicrobials. Presence of both African and Asian type of penicillinase producing plasmid gives an indication of extensive travel of patients affected with Gonorrhea. Our in silico modelling studies of mutant proteins provide new insights to access increasing antimicrobial resistance among Neisseria gonorrhoeae.

Background Fluoroquinolone-resistance in Neisseria gonorrhoeae is spreading in the world and almost 98% of N. gonorrhoeae strains are resistant to fluoroquinolones in Japan. It is known that the resistance to fluoroquinolones is closely related to genetic mutations of quinolone-resistance determining regions (QRDR) on gyrases genes such as gyrA or parC. In 2009, the first national surveillance of antimicrobial susceptibilities of N. gonorrhoeae was performed in Japan. In this surveillance, we found that sitafloxacin, one of newer

because of conformational change. Our recent report on mechanism of resistance of HIV-1RT against rilpivirin due to E138K mutation proposes a new aspect in this context. However, an extensive study exploring some new targets and drug resistance mechanisms is needed for design and development of novel and potential anti-viral agents to combat this challenge.

P1.015 ON THE MECHANISMS OF DRUG RESISTANCE IN HIV-1 RT

B Sharma. University of Allahabad, Allahabad, India

Human Immunodeficiency Virus Reverse Transcriptase (HIV-1RT), catalysing synthesis of proviral cDNA has been widely exploited as a most suitable target for attack by anti-AIDS chemotherapeutics. The anti-HIV-1RT molecules involve deoxy analogues of dNTP (nucleoside reverse transcriptase inhibitors, NRTIs), which inhibit it competitively by terminating DNA chain extension. The other group of HIV-1 RT inhibitors involves non-nucleoside reverse transcriptase inhibitors (NNRTIs), which bind preferably in the hydrophobic pocket or elsewhere at enzyme surface, inhibit it non-competitively. The AIDS therapy prescribes different combinations of various anti-HIV drugs mainly the anti-HIV-1RTs and anti-proteases (in highly active antiretroviral therapy; HAART), which significantly reduces HIV count to undetectable level. Unfortunately, due to drug selection pressure drug resistant variants of HIV-1 emerge and preclude chemotherapy of this pandemic. This paper is an endeavour to illustrate possible mechanisms involved in anti-HIV drugs resistance. Apart from attributes of numerous mutations reported in three key enzymes of HIV (RT, protease and integrase) in making anti-HIV drugs, one plausible mechanism of nucleoside analogue resistance involves ATP/GTP-based excision to unblock chain-terminated primers, thereby allowing viral replication to continue. Such unblocking has also been reported in vivo in presence of excess of pyrophosphate concentration; a reaction known as pyrophosphorolysis. In addition to viral mutants isolated from the AIDS patients, we have shown some artificial mutants of K154, which exhibited anti-HIV-1 drugs resistance property and the mechanism involved reduction in binding of the drugs to RT

P1.016 MOLECULAR ANALYSIS OF ANTIMICROBIAL RESISTANT NEISSERIA GONORRHOEA ISOLATES FROM DELHI, INDIA: A FUNCTIONAL GENOMICS APPROACH

1D Sachdev, 2M Bala, 1i kunari, 1R Pandey, 3amasuna. 1Department of Urology, University of Delhi, New Delhi-110007, India; 2Regional STD Teaching, Training & Research Centre, Varanasi Mahavir Medical College & Safdarjung Hospital, New Delhi-110029, India; 3Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India

Background In India, knowledge regarding N. gonorrhoeae antimicrobial resistance profiling is limited, and data concerning genetic characteristics of N. gonorrhoeae is also lacking. Herein, we investigated the genetic resistance determinants for various antimicrobials used against N. gonorrhoeae isolated in Delhi, India. Various studies have shown that this resistance towards antimicrobials could be either plasmid or chromosomal mediated involving mutations in various genes.

Methods Molecular basis of plasmid and chromosomal mediated antimicrobial resistance was analysed by amplifying and sequencing the most target genes, pen A and por B, of N. gonorrhoeae. Attempts have been made to in-silico model the structure of mutant PenA to understand how mutations in these genes affect the drug binding. A PCR assay was also carried out to analyse the penicillinase producing N. gonorrhoeae (PPNG).

Results Out of the 40 clinical isolates of N. gonorrhoeae studied, which were resistant to various antimicrobials, twenty eight isolates showed high resistance to penicillin (3–32µg/ml). These resistant isolates were PPNG positive (70%; 28/40) and predominantly harboured the African type of PPNG plasmid. Only two isolates carried the Asian type of plasmid. Mutations were also observed in penA and porB genes which correlate their effects on drug resistance. Through in silico modelling studies, we were able to even show that a single point mutation at G452S in penA gene changed the susceptibility of N. gonorrhoeae towards penicillin and tetracycline.

Conclusions This study clearly shows a cumulative effect of increasing mutations with subsequent increase in resistance towards various antimicrobials. Presence of both African and Asian type of penicillinase producing plasmid gives an indication of extensive travel of patients affected with Gonorrhea. Our in silico modelling studies of mutant proteins provide new insights to access increasing antimicrobial resistance among Neisseria gonorrhoeae.

P1.017 UNIQUE ACTIVITY OF SITAFLOXACIN, ONE OF NEWER FLUOROQUINOLONES, AGAINST CIPROFLOXACIN-RESISTANT N. GONORRHOEA

R Hamasuna, 1Sho, M Matsumoto, T Matsumoto. Department of Urology, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan

Background Fluoroquinolone-resistance in Neisseria gonorrhoeae is spreading in the world and almost 98% of N. gonorrhoeae strains are resistant to fluoroquinolones in Japan. It is known that the resistance to fluoroquinolones is closely related to genetic mutations of quinolone-resistance determining regions (QRDR) on gyrases genes such as gyrA or parC. In 2009, the first national surveillance of antimicrobial susceptibilities of N. gonorrhoeae was performed in Japan. In this surveillance, we found that sitafloxacin, one of newer

...