The molecular microbiome analysis showed that high levels of L. crispatus may protect against HIV infection and that recently acquired HIV infection may make women more prone to dysbiosis. More research is needed to confirm these relationships and determine causality.

Disclosure of interest statement This work was funded by the Aids Fonds Netherlands (project number 201102), European and Developing Countries Clinical Trials Partnership (project number CT.2005.33070.0001), and the European Commission (CHAARM consortium). The authors report no conflicts of interest.

P06.03 INCREASED G. VAGINALIS CLADE DIVERSITY IS ASSOCIATED WITH PENILE VAGINAL SEX AND BACTERIAL VAGINOSIS

1,2 J Twin, 1,2,3 SN Tabrizi, 4,5 LA Vodstrcil, 1,2,3 GM Garland, 5,6 CX Fairley, 3 G Fehler, 4 JA Hocking, 3 M Law, 5,6 KA Fethers, 5,6 CS Bradshaw. 1 Department of Microbiology and Infectious Diseases, Royal Women’s Hospital, Melbourne, Australia; 2 Murdoch Childrens Research Institute, Melbourne, Australia; 3 Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Australia; 4 School of Population and Global Health, University of Melbourne, Melbourne, Australia; 5 Melbourne Sexual Health Centre, Alfred Health, Melbourne, Australia; 6 Central Clinical School, Monash University, Melbourne, Australia; 7 Kirby Institute, University of New South Wales, Sydney, Australia.

Introduction While BV is considered to be polymicrobial, some investigators consider Gardnerella vaginalis to be integral to its pathogenesis. G. vaginalis is however, also detected in women without BV. Recent evidence indicates different G. vaginalis clades exist, but it is unclear how these may be associated with the pathogenesis of BV.

Methods Established qPCR and multiplex assays were used to determine the association between G. vaginalis load and 4 clades of G. vaginalis with onset of penile-vaginal sex and BV in two distinct study populations. The WOW study investigated incident BV in women having sex with women (WSW); 378 longitudinal samples were selected from 51 WSW who developed incident BV and 51 who did not. 178 samples were selected from 42 17–21 year old female students without BV from the Fuss study: 15 women had no prior sexual experience with BV, and BV is associated with an increase of GV abundance and/or biofilm formation. We conducted a secondary analysis using data from multiple studies to investigate the first two hypotheses.

Results Log GV load was higher in women with BV (n = 37; log10 median load = 6.2 (IQR = 6.5)) compared to those without BV (n = 156; log10 median load = 3.2 (IQR = 4.8); p = 0.0001) in the WOW population. No difference in G. vaginalis load was found between women with no history of penile-vaginal sex (n = 40; log10 median load = 4.1 (IQR = 3.3)) compared to women engaging in penile-vaginal sex (n = 35; log10 median load = 4.1 (IQR = 4.8); p = 0.548) in the FUS study. No difference in G. vaginalis presence and counts in the 25 samples were higher compared to samples with intermediate-score, with no difference between samples with intermediate-score and BV-score (p = 0.459). Only 25% (6%) of the 398 samples with BV-score were negative for GV by PCR compared to 30% (24%) with intermediate-score, and 66% (63%) with normal-score. Of the 25 samples with BV and no presence of GV, AV was detected in 13 (52%). The AV presence and counts in the 25 samples were lower compared to BV-positive-GV-positive samples (88%) (Chi2: p < 0.001; Kruskal-Wallis: p = 0.001) whereas AV presence and counts were higher compared to BV-negative samples (20%) (Chi2: p < 0.001; Kruskal-Wallis: p < 0.001).

Conclusion We confirm that BV presence and higher GV loads are strongly correlated with BV by Nugent score. Half of the samples of women with GV-negative dysbiosis had AV present. Future research is needed to investigate the role of GV and/or AV-associated biofilm in BV and to evaluate the role of threshold of GV and AV for potential PCR based diagnostic testing for BV.

Disclosure of interest statement The authors do not have a conflict of interest. No pharmaceutical grants were received in the development of this study.

P06.04 GARDNERELLA VAGINALIS PRESENCE IN VAGINAL DYSBIOSIS: A SECONDARY ANALYSIS

1 V Jespers*, 1 SC Francis, 1 T Crucitt, 1J van de Wijger. 1 Institute of Tropical Medicine; 2 London School of Hygiene and Tropical Medicine; 3 University of Liverpool

Introduction It has been hypothesised that Gardnerella vaginalis (GV) is necessary for the development of bacterial vaginosis (BV), and BV is associated with an increase of GV abundance and/or biofilm formation. We conducted a secondary analysis using data from multiple studies to investigate the first two hypotheses.

Methods Gram-stained Nugent scores and log-transformed bacterial counts obtained by in-house quantitative PCR for selected Lactobacillus species, GV and Atopobium vaginae (AV) counts were available for 1577 samples of women from Belgium (n = 469), Tanzania (n = 204), South Africa (n = 439), Kenya (n = 369), and Rwanda (n = 96). We determined the presence and median bacteria counts by Nugent score category using univariate analysis stratified by country.

Results Using Nugent scores, 1054(67%), 125(8%), and 398 (25%) samples had normal, intermediate and BV microbiota, respectively. GV presence was associated with BV in all countries (Chi2: p < 0.001). The median GV counts were higher for samples with intermediate-score (Kruskal-Wallis: p < 0.001) and BV-score (p = 0.001) compared to samples with normal-score, with no difference between samples with intermediate-score and BV-score (p = 0.459). Only 25% (6%) of the 398 samples with BV-score were negative for GV by PCR compared to 30% (24%) with intermediate-score, and 66% (63%) with normal-score. Of the 25 samples with BV and no presence of GV, AV was detected in 13 (52%). The AV presence and counts in the 25 samples were lower compared to BV-positive-GV-positive samples (88%) (Chi2: p < 0.001; Kruskal-Wallis: p = 0.001) whereas AV presence and counts were higher compared to BV-negative samples (20%) (Chi2: p < 0.001; Kruskal-Wallis: p < 0.001).

Conclusion Penile-vaginal sex was associated with increased G. vaginalis clade diversity in young women without BV. Increased G. vaginalis loads and increased clade diversity were associated with BV in WSW.

Disclosure of interest statement No pharmaceutical grants were received in the development of this study.