Abstracts

P06.05 DYNAMICS OF VAGINAL IMMUNE CORRELATES AND MICROBIOTA IN WOMEN FROM SUB-SAHARAN AFRICA

1JK Kyengo*, 2R Crucitti, 1M Harten, 1P Hardy, 1P Cools, 1J Michiels, 5D Delany-Morette, 1M Nwaoro, 2I Nsalyaba, 5S Joseph, 1R Fedorova, 1I van de Wijgert, 1G Vanham, 1KK Ariën, 2J Raivio, 1V Lepers, 2Viology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine (ITM), Antwerp, Belgium; 2HIV/STD Reference Laboratory, Department of Clinical Sciences, ITM, Antwerp, Belgium; 3Clinical Trials Unit, Department of Clinical Sciences, ITM, Antwerp, Belgium; 4Unit of Epidemiology and Control of HIV/STD, Department of Public Health, ITM, Antwerp, Belgium; 5Faculty of Medicine and Health Sciences, Department of Microbiology, Immunology and Clinical Chemistry, Ghent University, Ghent, Belgium; 6Wits Reproductive Health & HIV Institute, School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa; 7International Center for Reproductive Health, Mombasa, Kenya; 8Rinda Ubuza, Kigali, Rwanda; 9MIRC Clinical Trials Unit at University College London, London, UK; 10Laboratory of Genital Tract Biology, Department of Obstetrics, Gynaecology and Reproductive Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA; 11Institute of Infection and Global Health, University of Liverpool, Liverpool, UK; 12Faculty of Pharmaceutical, Veterinary and Biomedical Sciences, University of Antwerp, Belgium

Introduction Alterations in vaginal microbiota (VMB) have been shown to increase HIV acquisition and transmission in women. We carried out a longitudinal characterisation of the VMB, soluble cervicovaginal immune mediators and their determinants in women from Sub-Saharan Africa.

Methods Cervicovaginal lavages from two cohorts of sexually active women from Kenya, South Africa and Rwanda were analysed for IL-1α, IL-1β, IL-6, IL-12(p70), GM-CSF, IL-8, GM-CSF, G-CSF, Elafin, SLPI, IL-1RA and total protein. qPCR was used to quantify total Lactobacillus, L. crispatus, L. iners, L. jensenii, L. gasseri, A. vaginae, G. vaginalis, P. bivia and E. coli in vaginal swab samples. Cohort A had 40 women with a healthy VMB (Nugent score < 4) at all five bi-weekly visits. Cohort B consisted of 40 women with incident bacterial vaginosis (BV) (Nugent score > 7) in the course of their visits.

Results Cohort A: Individual Lactobacillus species were consistently present or absent within each woman over five study visits. Sexual activity was associated with reduced counts of total Lactobacillus, L. iners and Prevotella bivia but increased concentrations of IL-6, IL-12(p70) and IL-10. pH was positively associated with IL-1RA and IL1RA/IL1α ratio but negatively associated with total protein and SLPI. The amount of total Lactobacillus was significantly lower and total soluble immune mediators, MIP-1β and IL-8 higher in 14 women on progesterone-only contraception compared to those with a cycle (20 not on any contraceptives and 6 on combined pill). Cohort B: Total Lactobacillus, L. crispatus, IL-10, GM-CSF, Elafin, SLPI and total protein were all reduced during the first visit with BV. Conversely, G. vaginalis, A. vaginae, E. coli and IL-1β were increased with incident BV.

Conclusion Sexual activity, progesterone, clinical symptoms of pathology and BV alter vaginal mucosal immunity in Sub-Saharan African women potentially increasing their susceptibility to HIV infection.

Disclosure of interest statement This work was supported by the European and Developing Countries Clinical Trials Partnership (EDCTP) as part of a grant titled “Characterisation of novel microbicide safety biomarkers in East and South Africa.” The views expressed in this manuscript are those of the authors and do not necessarily represent the views of EDCTP. The authors report no conflict of interest.

P06.06 AZITHROMYCIN TREATMENT FOR CHLAMYDIA TRACHOMATIS IS ASSOCIATED WITH VAGINAL MICROBIOTA LACKING PROTECTIVE LACTOBACILLUS SPP

8B Ma*, 1P Gage, 1H Humphrey, 1H Yang, 1L Fu, 5M Terplan, 8P Baovil, 4J Faneey, 1Ravel. 1Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; 2Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; 3Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; 4Department of Biological Sciences and the Initiative for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA

Introduction Recurrence rate of Chlamydia trachomatis genital infection is frustratingly high (~25%). While re-exposure is thought to be the main reason. We hypothesised that after and because of azithromycin treatment, the vaginal microbiota is not optimally restored to a protective Lactobacillus spp. dominated state, resulting in enhanced susceptibility to C. trachomatis re-infection.

Methods We characterised the composition, structure and metagenome of the vaginal microbiomes in a cohort of 129 C. trachomatis-positive (CT+) women followed longitudinally before and after azithromycin treatment. We established in vitro susceptibility patterns to azithromycin and doxycycline of vaginal bacteria, including Lactobacillus crispatus, L. iners, L. gasseri, L. jensenii, and Gardnerella vaginalis.

Results Before treatment, CT+ women harbour communities that comprised either a complex assemblage of strict anaerobes, including G. vaginalis, with low proportions of Lactobacillus spp. or a high abundance of L. iners. After azithromycin treatment, we observed an increased proportion of women with communities dominated by high abundance of G. vaginalis and other strict anaerobes, or dominated by L. iners. Antibiotic resistance assays showed that certain types of L. iners and G. vaginalis are highly resistant to azithromycin and to lesser extents to doxycycline. Analysis of L. iners genomes reconstructed from vaginal microbial communities metagenomes showed that multiple phylogenetic clades of L. iners exist. One of these clades is not associated with CT+ women, and is characterised by low number of phage genes as well as unique secondary metabolites gene clusters, all of which could contribute to their resilience.

Conclusion These findings suggest azithromycin treatment is likely to restore a vaginal microbiota with low protective properties, increasing the risk to C. trachomatis re-infection.

Disclosure of interest statement Project funded by NIH-NIAID-STI-CRC U19 AI084044 “Eco-Pathogenomics of Chlamydial Reproductive Tract Infection”. No pharmaceutical grants were received in the development of this study.

P06.07 THE EFFECTS OF CONTRACEPTION ON THE VAGINAL MICROBIOTA

1CM Basis, 2JE Allsworth, 1HT Wahl, 1MT Cousarion, 2D Sack, 1D Bell*. 1University of Michigan, 2University of Missouri – Kansas City

Introduction The human microbiota plays important roles in immune system development and resistance to infection.