Introduction
Persistent systemic immune activation despite effective HIV treatment may be revealed by measuring plasma ‘biomarker’ levels. Here we investigate three established biomarkers within a well-characterised HIV cohort.

Methods
Plasma sCD14, sCD163 and CXCL10 levels were measured by ELISA methods in 475 consecutive patients with documented CVD risk (age, ethnicity, gender, smoking, blood pressure, BMI, fasting metabolic profile), as well as HIV treatment history and immunological/virological outcomes, and analysed using multiple regression analysis.

Results
All biomarkers were reduced with higher CD4 counts (p < 0.05), but showed distinct associations with virological response: CXCL10 strongly correlated with viral load (p < 0.001), sCD163 was significantly reduced among ‘aviremic’ patients only (p = 0.02), while sCD14 was unaffected by virological status under 10000 cpms (p > 0.2) however sCD14 was increased if HIV RNA viral load was >10000 cpms (p = 0.003). The choice of HIV treatment did not affect CXCL10, however, higher sCD163 was associated with PI’s (p = 0.05) and lower sCD14 was associated with integrase inhibitors (p = 0.02). Several CVD risk factors were associated with sCD163 (age, ethnicity, HDL, BMI), with a favourable influence of Framingham score <10% (p = 0.04). Soluble CD14 levels were higher among smokers (p = 0.002), with no effect of other CVD risk factors, except age (p = 0.045), or overall Framingham score.

Conclusion
These biomarkers reveal remarkably distinct associations, with levels of CXCL10 most readily explained by routinely monitored variables (viral load, CD4 counts), while sCD163 levels appear to reflect a deeper level of virological suppression as well as the influence of CVD risk factors. Levels of sCD14, which have been linked to overall mortality risk, are least associated with routinely monitored variables, with evidence of specific effects of smoking and integrase inhibitor therapy that warrant further investigation.

Disclosure of interest statement None to disclose.

021.3
PRE-THERAPY INFLAMMATION/COAGULATION ACTIVATION AND LONG-TERM CD4 RESPONSE TO ANTIRETROVIRAL THERAPY

1AC Adhira*, 1AN Phillips, 3EMery, 2RD MacArthur, 4HFurrer, 5SDeWit, 6MDG Law, for the INSIGHT Strategies for Management of Antiretroviral Therapy (SMART) and Flexible Initial Retrovirus Suppressive Therapies (FIRST) study groups. 1Kirby Institute, UNSW Australia, Sydney, Australia; 2University College London, London, UK; 3Wayne State University, Michigan, USA; 4Infectious Diseases, University Hospital, Bern, Switzerland; 5Department of Infectious Diseases, CHU Saint-Pierre, Brussels, Belgium; 6Hospital J. M. Ramos Mejía, Buenos Aires, Argentina

10.1136/sextrans-2015-052270.195

Background
Long-term brain neurochemical changes are not clearly understood in HIV-infected adults who are ageing and are otherwise clinically stable.

Methods
Forty men (mean age = 54 ± 7), 20 HIV-infected (70% with historical AIDS, nadir CD4 ≤350, all on antiretroviral treatment and virally suppressed), and 20 demographically comparable HIV-uninfected controls were enrolled into a prospective observational cohort study. All underwent standard neuropsychological testing to determine the level of neurocognitive performance over an 18-month period, and a proton magnetic resonance spectroscopy scan of the brain frontal white matter to assess in vivo neurochemical information. Clinically relevant neuropsychological change over the study period was determined using neurocognitive norms for change. Major brain metabolites: Creatine, N-Acetyl Aspartate, Choline, Glutamate/Glutamine and Myo-Inositol were fitted in mMRU in reference to water. Brain metabolites’ change was determined using linear regression with a time effect, a group effect and a time*group interaction effect. Data were randomly selected from the larger baseline cohort (N = 120) for this preliminary analysis.

Results
Over the 18 months period, neurocognitive performance change did not differ between HIV-infected and controls. Creatine significantly decreased in the HIV-infected compared to the controls (p < 0.03). Myo-Inositol and Glutamate/Glutamine increased as a function of time (p < 0.0001) but equally in both groups. When adjusting our analyses for age, we corroborated an age*group effect (p < 0.03) on reduced N-Acetyl Aspartate in the HIV-infected participants, while the decreasing Creatine concentrations were not affected by age.

Background
Long-term brain neurochemical changes are not clearly understood in HIV-infected adults who are ageing and are otherwise clinically stable.

Methods
Forty men (mean age = 54 ± 7), 20 HIV-infected (70% with historical AIDS, nadir CD4 ≤350, all on antiretroviral treatment and virally suppressed), and 20 demographically comparable HIV-uninfected controls were enrolled into a prospective observational cohort study. All underwent standard neuropsychological testing to determine the level of neurocognitive performance over an 18-month period, and a proton magnetic resonance spectroscopy scan of the brain frontal white matter to assess in vivo neurochemical information. Clinically relevant neuropsychological change over the study period was determined using neurocognitive norms for change. Major brain metabolites: Creatine, N-Acetyl Aspartate, Choline, Glutamate/Glutamine and Myo-Inositol were fitted in mMRU in reference to water. Brain metabolites’ change was determined using linear regression with a time effect, a group effect and a time*group interaction effect. Data were randomly selected from the larger baseline cohort (N = 120) for this preliminary analysis.

Results
Over the 18 months period, neurocognitive performance change did not differ between HIV-infected and controls. Creatine significantly decreased in the HIV-infected compared to the controls (p < 0.03). Myo-Inositol and Glutamate/Glutamine increased as a function of time (p < 0.0001) but equally in both groups. When adjusting our analyses for age, we corroborated an age*group effect (p < 0.03) on reduced N-Acetyl Aspartate in the HIV-infected participants, while the decreasing Creatine concentrations were not affected by age.
results were maintained. Among the HIV disease biomarkers including viral load blips over the study period, only a lower nadir was associated with decreasing Creatine (Spearman Rho r = -.49, p < 0.03).

Conclusions Chronic HIV infection is associated with subclinical cellular energy abnormalities (Creatine) linked to past levels of immunosuppression and acceleration of neuronal integrity (N-Acetyl Aspartate). This preliminary study further reinforces the need for longer-term follow-up in chronic HIV-infected ageing persons to determine the prognostic value of these findings.

Disclosures This project was supported in part by NHMRC project grant ID568746, NHMRC Career Development Fellowship APP1045400 and Abbvie research grant supporting the acquisition of the follow-up MRI (CIA Cysique).

BJB has received research funding, consultancy fees, and lecture and travel sponsorships from Gilead Sciences, ViIV Healthcare, and MSD.

LAC has received research support from MSD, Abbvie, Gilead Sciences, and ViIVHealthcare. LAC has received honoraria from Abbvie and ViIVHealthcare.

O22 - Ending hepatitis C in populations

O22.1 AUSTRALIAN HIV/HEPATITIS C CO-INFECTED PATIENTS FALL BEHIND HIV MONO-INFECTED PATIENTS IN MOVE TOWARDS EARLY HIV TREATMENT INITIATION

C Brown*, K Winkler. Authors Are Employees of Ipsos Healthcare, Sydney, Australia 10.1136/sextrans-2015-052270.198

Introduction One in eight people living with HIV (PLHIV) in Australia are estimated to be co-infected with Hepatitis C (HCV). In the light of clinical guideline changes with regard to antiretroviral therapy (ART) initiation, we examine the impact of co-infection status on uptake of treatment, and highlight population-specific differences relative to HIV mono-infected patients.

Methods Ipsos Healthcare’s HIV Therapy Monitor is a patient chart audit study, which monitors trends in the treatment of PLHIV in Australia. Demographic and treatment data are collected bi-annually from a panel of 25+ HIV-treating clinicians. The data in this report is based on a sample of 4351 patient records collected between 2008-2014, of which 412 were co-infected with HCV.

Results While the proportion of HIV mono-infected patients receiving ART has steadily increased from 67% in 2008 to 84% in 2014 (p < 0.0001), the opposite trend is observed in the HIV/HCV co-infected population. The rate of treatment in the co-infected cohort has dropped from 84% in 2010/2011 to 66% in 2014 (p = 0.003), with co-infected patients experiencing an average delay of 42 months between HIV diagnosis and initiation of ART, compared with 25 months for mono-infected patients (p = 0.013). Patient’s lack of support network was most frequently cited by clinicians as the reason for delaying treatment for co-infected patients, followed by patient choice and expected non-compliance.

Conclusion Increasing evidence is now available to support early initiation of ART, both in terms of clinical benefits as well as in preventing disease transmission. However, despite encouraging results among HIV mono-infected patients, outcomes for the HIV/HCV co-infected population reveal a growing disparity between these groups in Australia. The increasing delay to treatment supports the need to consider this patient group a priority population, and indicates that further action is required to address the complications involved in treating these patients.

Disclosure of interest statement There are no conflicts of interest to declare.