Introduction

Friends can be an important influence on HIV and sexual health via connections to sexual partners, influential sexual behaviour norms, or provision of social support. In this study from rural South Africa, we examined associations between the characteristics of young women’s friendships and their risk of Herpes Simplex Virus Type 2 (HSV-2) and HIV infection.

Methods

In 2011–2012, we tested 2325 13–20 year-old young women participating in the HPTN 068 study baseline for HIV and HSV-2 and we collected descriptions of 5 friendships. We used logistic regression to analyse associations between HIV and HSV-2 and generated friendship net summary measures of the 5 friends’ socio-demographic characteristics and the number of friends perceived to have had sex. We excluded those HIV positive and reporting never having had sex from the HIV analyses, as likely perinatal infections (n = 37).

Results

Adjusted for participant and friendship net socio-demographic characteristics, each additional friend at least one year older than the participant was associated with raised odds of HIV (adjusted Odds Ratio = 1.45, 95% CI 1.22–1.73, p < 0.001) and HSV-2 (aOR = 1.45, 95% CI 1.22–1.73, p < 0.001). Each additional friend perceived to have ever had sex also raised the odds of HIV (aOR = 1.32, 95% CI 1.04–1.68, p = 0.020) and HSV-2 (aOR = 1.21, 95% CI 1.06–1.38, p = 0.005).

Conclusion

We found evidence that the ages of young women’s friends and her perceptions of their sexual behaviour increase her risk for HSV-2 and HIV infection. While further longitudinal research would assist in disentangling causal relationships, the extent to which policies or programmes influence age-mixing and young people’s normative environments, for example in school classes and youth groups, should be examined.

Disclosure of interest statement

E Fearon was supported by a Bloomsbury Colleges and London International Development Centre PhD Studentship. The HPTN 068 trial is part of the HIV Prevention Trials Network and funded by the National Institutes of Health, United States.
Objective To determine current seroepidemiology of CT infection in children in a US inner city population.

Design/methods Anonymous serum samples were obtained from children in 2 hospitals in Brooklyn, NY from 2012–2015. CT IgG was determined using EIA (Ani LabSystems). The following age strata were used: 11–12, 13–14, 15–16, 17–18, 19–20 y.

Results 512 sera were included in the final analysis. Mean age 17 y. There were 192 (37.5%) males and 320 (62.5%) females. CT antibody was first detected at 16 y and 18 y for females and males, respectively. The prevalence per age-cohort were: Females: 11–14 y-0, 15–16 y- 3.64%, 17–18 y -15.9%, 19–20 y -14.75%; Males: 11–16 y- 0, 17–18 y- 8.51%, 18–20 y- 9.33%.

Conclusions The prevalence of antibody was higher in girls than their male counterparts, mirroring national trends based on NAAIs. Antibody was first detected in females at 16 y and males at 17 y, reflecting sexual debut. Prior data from this cohort found antibody in% infants < 1 y, which disappeared between 1 and 16 y. The delay in male antibody detection may be due to later exposure and/or anatomical and physiological factors between the sexes. These data are critical in informing potential CT vaccine strategies. Future studies using a larger sample size and other populations will allow more precise estimates of age and gender-specific prevalence.

P03.05 CHLAMYDIA RE-TESTING AT SEXUAL HEALTH CLINICS HAS INCREASED BUT FURTHER INITIATIVES ARE NEEDED FOR YOUNG PEOPLE


Introduction Chlamydia is the most commonly notified infection in Australia; most diagnoses are in young people, and re-infections are common. Re-infection leads to onward transmission and increases the risk of reproductive morbidity and HIV transmission. Guidelines recommend re-testing 3 months following treatment to detect re-infections. We assessed trends in re-testing after a chlamydia diagnosis in Sexual Health Clinics (SHCs) in New South Wales (NSW) over a 5-year period and factors associated with re-testing.

Methods Routine patient data from 2009 to 2013 were extracted from 33 SHCs. A Chi-2 test was used to assess time trends in the proportion re-tested in 2–4 months following a chlamydia diagnosis and also 2–12 months, in a range of risk groups. Multivariate logistic regression was used to determine demographic, risk behaviour and clinic factors associated with re-testing at 2–4 months, adjusting for clinic clustering.

Results Overall, 8,646, chlamydia diagnoses were analysed and 1,281 (15%) were re-tested in 2–4 months (23% of GBM, 25% of sex workers, 12% of young heterosexuals aged <30 years), with a significant increase over time (13% in 2009 to 18% in 2012, p < 0.01). In a broader time frame of 2–12 months, re-testing was higher at 26% (42% of GBM, 41% of sex workers, 20% of young heterosexuals) with a modest increase over time (25% to 30%, p < 0.01). Factors associated with re-testing in 2–4 months were: being GBM (adjusted odds ratio (aOR) = 1.65, 95% CI: 1.44 -1.90, p < 0.01), current sex work (aOR = 2.04,95% CI: 1.65–2.52, p < 0.01), attending the clinic >5 times (aOR: 3.11,95% CI: 2.62–3.70, p < 0.01) and people attending clinics with SMS reminders (aOR = 2.25,95% CI: 1.16-4.37, p = 0.01).

Conclusions Re-testing at 2–4 months after a chlamydia diagnosis increased over time, but remains low. GBM and sex workers were more likely to be re-tested, perhaps because they were attending anyway. Attending clinics with SMS reminders increased the likelihood of re-testing. Additional strategies, such as home-collection, may be needed to increase re-testing in young heterosexuals.

Disclosure of interest statement The ACCESS Sexual Health Services Network is funded by the NSW Ministry of Health, Victorian Department of Health, Australian Capital Territory Department of Health, and the Northern Territory Department of Health.