Introduction Retesting Chlamydia trachomatis (CT) treated people after 3–12 months is recommended as it can yield substantial numbers of reinfections. A test-of-cure (TOC) shortly after treatment (within 3 months) is not advisable due to the likelihood of false positive findings leading to over-treatment. Spatial analyses are useful to detect geographical areas of low likelihood of false positive findings leading to overtreatment. The aim was to assess geographical variation in test practices of general practitioners (GPs) in The Netherlands.

Methods Retrospective laboratory data containing CT tests of 48 GPs in 4 municipalities were obtained (2011–2015) from the public laboratory in the southern part of the Netherlands (183 thousand residents). First recorded urogenital positive CT tests of men (n=249; 39.2%) and women (n=386;60.8%) ≥16 years between January 2011 and July 2015 were included in the analyses and TOC and retests were outcomes. Logistic regression was used for analyses.

Results Overall, 8,275 CT tests were performed (positivity rate 8.4%; n=691); only 0.4% (n=43) from extra genital sites. On a GP level, the number of CT tests varied geographically from 1 to 2,421 (p<0.001). A TOC was performed in 19.1% of the CT cases (n=1,233; 13.8% positive); TOC was more often performed in south Maastricht in comparison with the centre of Maastricht (p=0.02; OR 3.0, 95% CI 1.23–7.33). A retest was performed in 23% of the CT cases (n=1,461; 10.3% positive). The rate of retests non-significantly varied geographically between 6.3% and 30.2%; p=0.33. Patients with a TOC were more likely to have a retest in comparison with cases without a TOC (p=0.02).

Conclusion Testing at extra genital sites and the overall proportion of retests was low at GP practices. Almost one out of five CT cases returned within three months, and many (re-) infections were probably missed. Moreover, it seems that there are geographical variations in test practices of GPs. Thus, targeted interventions at the local level are needed to increase CT testing and retesting practices of GPs.

P3.235 PARENTAL ACCEPTANCE OF HPV VACCINE IS HIGH AND BASED ON POOR KNOWLEDGE

W. Lobão, 1,2CAST Santos, 1,2GAC Santos, 1,2MCC Almeida, 1,2ED Moreira Jr. 1,2Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Brazil; 2Clinical Research Centre, Associação Obras Sociais Índia Dívida, Brazil.

Introduction Vaccination coverage levels of the National Immunisation Program (PNI) in Brazil ranges from 80% to 95%, suggesting that parental acceptance of these vaccines is high. In 2014, HPV vaccine was introduced in the PNI. We conducted a survey to estimate parental acceptance of HPV vaccine and its determinants.

Methods This was a random digit calling telephone survey performed in seven large cities from all five regions in Brazil. Eligible parents had to have one or more child less than 18 years old. We selected at least 100 subjects in each city. A standardised questionnaire was used to collect sociodemographic information and data on knowledge, attitudes and practices related to HPV vaccine, cervical cancer and HPV. Trained personnel conducted the interviews that lasted on average 20 min.

Results Overall 826 parents were included in the survey (73% response rate). Parental acceptance for vaccinating against HPV was similarly high for female or male children, 92.8% and 91.7%, respectively. It did not change significantly among the cities studied (range 86.3%–95.5%). Parents’ main reasons to give the HPV vaccine to their children were: “Vaccines are good/important” (85.6%), “Prevents cervical cancer” (6.6%), and “Vaccine is in the PNI” (3.3%). Only 0.7% reported “Prevents genital warts”. Among parents with girls eligible for HPV vaccination (10–14 years old) under the PNI (n=291), 71.4% had their daughters vaccinated.

Conclusion Parental acceptance of HPV vaccine is high (92%), but a lower percentage results in actual vaccination. Moreover, the main reason to vaccinate is based on a vague assumption (“Vaccines are good/important”). Only few parents reported that HPV vaccination prevents cervical cancer. Parents whose vaccine acceptance is ill founded and based on poor knowledge are more vulnerable to change their mind when challenged by stress related mass reactions to HPV vaccine reported by the media or when facing false arguments against vaccination by anti-vax reports.

P3.236 STUDY OF GENITAL CANCER AETIOLOGY: ASSOCIATION OF HUMAN PAPILLOMAVIRUS (HPV) AND MERKEL CELL POLYMORPHAVIRUS (MCPYV)

1Rocha WM, 2CF Baez, 1LA Afonso, 1FN Carastati, 1RB Vanella, 1SMB Cavalcanti. 1Universidade Federal Fluminense – Instituto Biomédico – Laboratório de Diagnóstico Virologico, Brazil; 2Universidade Federal do Rio de Janeiro – Departamento de Medicina Preventiva, Brazil.

Abstracts
Introduction The genital infection by the HPV is among the most frequent sexually transmitted diseases (STD) worldwide, and it may result in lesions that can lead to the carcinogenesis of the genital tract. However, other factors may be associated with the onset or progression of the tissue malignancy process, such as the MCPyV, which may present oncogenic profile in the epithelial tissue. This study aims to investigate the presence of MCPyV and HPV in malignant lesions of the male and female genital tract, in order to contribute to the elucidation of the role of these viruses in the cellular malignancy process and to the epidemiological knowledge regarding the prevalence of both viruses in neoplastic lesions.

Methods This is a cross-sectional study evaluating the prevalence of HPV and MCPyV infection in samples of cervical carcinoma and penile cancer. To date, we have obtained 112 samples of penile carcinoma and 31 samples of cervical carcinoma. So, we aim to detect the presence of HPV DNA by the polymerase chain reaction (PCR) technique using the generic primers MY09/MY11; to genotype HPVs by specific PCR to the E6 gene; to detect and quantify DNA of the MCPyV by the Nested PCR technique and real-time PCR; to investigate the presence of truncation mutations in the major T antigen of MCPyV.

Results Results are partial. To date, all the male samples were analysed. We verified the presence of HPV in 54 (48.2%) of these samples, in which the most prevalent type was the HPV16 (66%). The cervical carcinoma samples are still under analysis.

Conclusion The collection of cervical neoplasia samples is still being performed. In 2015, our research group found a case of multiple infection by HPV, MCPyV and Epstein-Barr virus in a case of squamous cell carcinoma of the penis in Rio de Janeiro. This was the first report of the presence of MCPyV in this type of penile lesion. Thus, we look forward to find results that contribute to the presence of MCPyV in genital malignant lesions and to elucidate its role in the oncogenic pathway of malignant lesions.

Introduction Current surveillance of antibiotic resistance in Neisseria gonorrhoeae (NG) relies heavily on the culture of NG. However, culture of NG is challenging due to demanding nutritional and growth requirements of this micro-organism. As a result, surveillance data are limited to only cultured strains while of >50% of Dutch NG positive patients no NG is cultured (data from Dutch Gonococcal Surveillance Program). In this study we compared results from direct detection of mosaic penA with detection of cultured strains to investigate feasibility of direct molecular resistance surveillance.

Methods A convenience sample of 106 NG positive samples of which positive NG culture results were available (46 urine, 9 genital swabs, 35 anorectal swabs and 16 oropharyngeal swabs) were collected between 2013–2015. Presence of mosaic penA was determined by real-time PCR. All positive findings were confirmed with sequencing. MICs on cultured NG were determined using E-tests.

Results LOD determinations of the in-house mosaic penA PCR in comparison to routine NAAT (using COBAS 4800, Roche Diagnostics) showed that the mosaic penA assay was slightly less sensitive than the commercial NAAT. In samples with very low NG loads, mosaic penA detection might be false-negative. Of 106 NG positive samples, 11 samples showed the presence of mosaic penA (6 urine, 4 oropharyngeal and 1 anorectal swab). Of these 11 samples, NG isolates were re-cultured from 8 samples and all isolates contained the mosaic penA gene. MIC values for ceftriaxone varied between 0.016 and 0.094 mg/L and thus no reduced susceptibility was observed. Although cross-detection with mosaic penA from N. meningitidis is possible, no evidence of this was shown in this study.

Conclusion In conclusion, this study indicates that detection of mosaic penA directly from clinical samples is feasible and that results match detection of penA from clinical isolates obtained from these samples. Direct detection of antibiotic resistance genes would show an insight in resistance surveillance of strains that are not or cannot be cultured.