Factors Associated with Antimicrobial Resistant Gonorrhoea Infections in Men Who Have Sex with Men: Case-Control Study

Nicola Low, *Bertisch B, *Hausser C, *Klauschke M, *Kasaian S, *Egli-Gany D, *Snid J, *Unemo M, *Endimiani A, *Doré, *Farrer H, *Institute of Social and Preventive Medicine, University of Bern, Switzerland; *Checkpoint Zurich, Switzerland; *Department of Infectious Diseases, Bern University Hospital, Switzerland; *Institute for Infectious Diseases, University of Bern, Switzerland; *Institute of Social and Preventive Medicine, University of Bern, Switzerland; *Department of Laboratory Medicine, Microbiology, Örebro University, Sweden

Introduction

Strategies to identify antimicrobial resistance (AMR) and improve antibiotic stewardship to control the spread of AMR in *Neisseria gonorrhoea* (NG) are urgently needed. As part of a project to develop a point-of-care (POC) test for AMR in NG, we investigated factors that could help identify infections due to antibiotic resistant NG.

Methods

We enrolled men who have sex with men (MSM) at sexual health centres in Zurich and Bern, Switzerland, from May 2015 to June 2016. All had samples taken for NG detection from urethra, rectum and pharynx. In culture positive specimens we obtained minimum inhibitory concentrations (MICs) using Etest for ciprofloxacin, ceftriaxone, cefixime and spectinomycin (EUCAST AMR breakpoints) and azithromycin (EuroGASP >2 mg/L). We collected clinical data and patients completed an online questionnaire. We compared cases (positive NG culture and AMR) with controls (NG and no AMR) with odds ratios (OR) and 95% confidence intervals (CI). We used multivariable logistic regression in NG with complete data for all included variables.

Results

Of 230 MSM enrolled, 117 had a positive NG culture. There were 46 (39%) cases with resistant NG (ciprofloxacin, n=45, azithromycin, n=1) and 71 controls. Clinical findings did not differ between cases and controls. Cases were more likely than controls to have had sex outside Switzerland in the previous 3 months (OR 2.2, 95% CI 1.0–4.7, p=0.05), to have received oral sex (OR 3.6, 95% CI 0.7–46.8, p=0.08) and to have concurrent partners (OR 2.2, 95% CI 0.8–6.5, p=0.11). In multivariable analysis (39 cases, 54 controls), the association with sex abroad remained (OR 2.0, 95% CI 0.9–4.8, p=0.10), controlling for concurrency.

Conclusion

In this population of MSM in Switzerland, AMR in NG might be more common in MSM who have sex abroad and who receive oral sex, possibly from asymptomatic pharyngeal NG. No clinical factors distinguished AMR from non-AMR NG infections in MSM. Strategies such as development of POC tests that detect AMR are needed to conserve last-line antibiotic treatment for NG.
Introduction Antimicrobial resistant Neisseria gonorrhoeae (NG) is important to monitor as a potential global public health threat. The Thailand Enhanced Gonococcal Antimicrobial Surveillance Programme (EGASP) was started in November 2015 as a collaboration between the Thailand Ministry of Public Health, the US Centres for Disease Control and Prevention and the World Health Organisation. As a part of this surveillance activity, Thailand conducted an internal quality assessment (QA) of clinical and laboratory data in order to improve surveillance data quality.

Methods EGASP Thailand occurs in 2 sentinel sites: Bangrak Hospital and Silom Community Clinic at Tropical Medicine. Men with symptoms had demographic and clinical data collected as well as a urethral specimen collected for NG culture. A random selection of 10% of EGASP IDs were sampled from November 2015 to June 2016. We assessed clinical and laboratory findings using a standardised review tool that compared the EGASP database to source documents. We describe key findings from the review activities.

Results Overall, 699 specimens were collected for EGASP and 70 (10%) EGASP IDs were randomly sampled by SQL command for review. Results from the quality review included: differences in laboratory findings (6%), differences in interpretation of the clinical abstraction tool between sentinel sites (10%), missing data in the EGASP database after chart abstraction and laboratory testing (14%), differences in the recording of clinical data (19%), and differences in the recording and tracking of laboratory variables (47%). As a result of this evaluation, staff updated missing data on records sampled, conducted an overall refresher training for staff and established a new laboratory tracking process.

Conclusion EGASP Thailand is the first coordinated global project to conduct comprehensive surveillance for NG resistance from symptomatic men. An internal QA helped direct efforts to improve surveillance. Ongoing NG surveillance and periodic quality assessments help ensure high quality surveillance data.

Oral Presentation Session 13
Biomedical and Systems Biology

013.1 SURVEY OF ANTIMICROBIAL RESISTANCE IN CLINICAL NEISSERIA GONORRHOEAE ISOLATED OVER FOUR YEARS IN NAIROBI – KENYA

Mitschack Juma Omolo, Lewa Pole, Isabella Mwangi, Joshua Kimani, Omu Anzala, Jonathan Ololo, Wi Teodora Elviira, Susanne Jacobsson, Magnus Unemo, Kavi-Institute of Clinical Research (UON), Kenya; Sex Workers Outreach Program Clinic (SWOP), Kenya; 3Department of Medical Microbiology (UON), Kenya; 4World Health Organisation (WHO), 5WHO Collaboration Centre for Gonorrhoea and other STIs, Örebro University Hospital in Sweden.

Introduction Systematic antimicrobial resistance (AMR) surveillance of N. gonorrhoeae (GC) from local to global level are being intensified to inform and design a monitoring system for its control. High-level resistance to previously recommended quinolones is widespread and decreased susceptibility to the extended-spectrum (third-generation) cephalosporin has been report. The Gonococcus antimicrobial surveillance program (GASP) in Kenya and the region carried out a study to determine the frequency and diversity of antimicrobial resistance of GC isolates from a Sex Workers Outreach Program (SWOP) Clinic in Nairobi over a period of 4 years.

Methods The study tested 238 GC isolates from participants presenting with cervical/vaginal discharge. Samples collected were inoculated directly on modified Thayer Martin media (MTM), transported to GASP Laboratories at KAVI-Institute of Clinical Research for processing by standard bacteriological procedures. Antibiotic susceptibility testing was performed using diffusion gradient method. The strains were defined as susceptible, intermediate and resistant using E-test as guided by WHO, all the findings were validated at WHO Collaborating Centre for Gonorrhoea and other STIs, Örebro University Hospital in Sweden.

Results GC isolates, 41 in 2012, 119 in 2013, 24 in 2014 and 54 in 2015 showed 100% susceptibility to cefixime, ceftriaxone and spectinomycin in four years with a mean susceptibility of 82%, 37.7%, 19.5%, 1.6% and 0% for azithromycin, erythromycin, ciprofloxacin, penicillin and tetracycline respectively. Over the period ciprofloxacin showed a rise in resistance from 56% in 2012, 58.8% in 2013, 66.7% in 2014 to 68.5% in 2015.

Conclusion Spectinomycin, cefixime, ceftriaxone, azithromycin are useful drugs, while Ciprofloxacin is the most prescribed antibiotic is no longer reliable for treatment of GC in the region. Continued surveillance will enables the public health managers to modify the national treatment guidelines. Worsening GC drug resistance will compromise effective treatment and decrease disease control efforts.

013.2 MOLECULAR EPIDEMIOLOGY IN RELATION TO AZITHROMYCIN RESISTANCE IN NEISSERIA GONORRHOEAE ISOLATES FROM AMSTERDAM, THE NETHERLANDS, BETWEEN 2008 AND 2015 – A CASE-CONTROL STUDY

Alie P Van Dam, Carolien Wind, Maarten Schim Van Der Loef, Henk De Vries, Mirjam Dierdorp, Sylvia Brusten, Amsterdam Health Service, The Netherlands; Public Health Laboratory, Amsterdam Health Service, The Netherlands; Department of Infectious Diseases, Amsterdam Health Service, The Netherlands; STD Outpatient Clinic, Amsterdam Health Service, The Netherlands.

Neisseria gonorrhoeae resistance to ceftriaxone and azithromycin increases, which threatens the recommended dual therapy based on these antimicrobials. We used molecular epidemiology to identify N. gonorrhoeae clusters, and associations with azithromycin resistance in Amsterdam, the Netherlands. N. gonorrhoeae isolates were selected from patients visiting the Amsterdam Sexually Transmitted Infections Clinic, from January 2008 through September 2015. We included all azithromycin resistant isolates (minimum inhibitory concentration [MIC] ≥ 2.0 mg/L), and frequency matched susceptible controls (MIC ≤ 0.25 mg/L). All isolates were tested using 23S rRNA sequencing, N. gonorrhoeae multiantigen sequence typing (NG-MAST), and multilocus variable-number of tandem repeat analysis (NG-MLVA). A hierarchical cluster analysis of NG-MLVA
Correction: Quality assessment of the enhanced gonococcal antimicrobial surveillance program in Thailand, 2015–2016

Weston E, Lertpruek S, Tongtoyai J. Quality assessment of the enhanced gonococcal antimicrobial surveillance program in Thailand, 2015–2016. Sex Transm Infect 2017;93:A28–9. doi: 10.1136/sextrans-2017-053264.71. The authors have requested a correction to the author list and affiliations for their abstract. While E Weston did indeed present this at ISSTDR in Rio last year, she did so in place of her Thai colleagues who were unable to be there. They noticed an error in the published book of the author list and the correct author list should be as follows: Siriratpanan M1,2, Lertpruek S1, Tongtoyai J1, Cherdtrakulkit T1, Buasakul P1,2, Sukwicha W3, Chonwattana W3, Weston E4, Dunne EF3,5, Sirivongransan P2

The correct author affiliations should be:
1Bangrak STIs Center, Bureau of AIDS, TB, and STIs Bangkok, Thailand
2Department of Disease Control and Prevention, Thailand Ministry of Public Health, Nonthaburi, Thailand
3HIV/STD Research Program, Thailand Ministry of Public Health – U.S. Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand Division of HIV/AIDS Prevention, U.S. Centers for Disease Control and Prevention, Georgia, USA
4Division of STD Prevention, U.S. Centers for Disease Control and Prevention, Georgia, USA
5Division of HIV/AIDS Prevention, U.S. Centers for Disease Control and Prevention, Georgia, USA

© Author(s) (or their employer(s)) 2021. No commercial re-use. See rights and permissions. Published by BMJ.
Sex Transm Infect 2021;97:e2. doi:10.1136/sextrans-2017-053264.71corr1

Check for updates
Correction: Quality assessment of the enhanced gonococcal antimicrobial surveillance program in Thailand, 2015–2016

Weston E, Lertpruek S, Tongtoyai J. Quality assessment of the enhanced gonococcal antimicrobial surveillance program in Thailand, 2015–2016. Sex Transm Infect 2017;93:A28–9. doi: 10.1136/sextrans-2017-053264.71. The authors have requested a correction to the author list and affiliations for their abstract. While E Weston did indeed present this at ISSTDR in Rio last year, she did so in place of her Thai colleagues who were unable to be there. They noticed an error in the published book of the author list and the correct author list should be as follows: Siritrapanan M1,2, Lertpruek S3, Tongtoyai J3, Cherdtrakulkiat T3, Buasakul P1,2, Sukwicha W3, Chonwattana W3, Weston E4, Dunne EF3,5, Sirivongrangsan P3

The correct author affiliations should be:
1Bangrak STIs Center, Bureau of AIDS, TB, and STIs Bangkok, Thailand
2Department of Disease Control and Prevention, Thailand Ministry of Public Health, Nonthaburi, Thailand
3HIV/STD Research Program, Thailand Ministry of Public Health – U.S. Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand Division of HIV/AIDS Prevention, U.S. Centers for Disease Control and Prevention, Georgia, USA
4Division of STD Prevention, U.S. Centers for Disease Control and Prevention, Georgia, USA
5Division of HIV/AIDS Prevention, U.S. Centers for Disease Control and Prevention, Georgia, USA

© Author(s) (or their employer(s)) 2018. No commercial re-use. See rights and permissions. Published by BMJ.

Sex Transm Infect 2018;94:442. doi:10.1136/sextrans-2017-053264.71corr1