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AbsTrACT
Objectives to explore whether existence of long-
lasting partial immunity against reinfection with 
Chlamydia trachomatis is necessary to explain C. 
trachomatis prevalence patterns by age and sexual 
risk, and to provide a plausible estimate for the effect 
size, defined here as a reduction in susceptibility to 
reinfection.
Methods a population-based mathematical model was 
constructed to describe C. trachomatis natural history 
and transmission dynamics by age and sexual risk. the 
model was parameterised using natural history, and 
epidemiological and sexual behaviour data, and applied 
for UK and US data. Sensitivity analyses were conducted 
to assess the robustness of predictions to variations in 
model structure and to examine the impact of alternative 
assumptions for the mechanism underlying partial 
immunity.
results Partial immunity against reinfection was found 
necessary to explain observed C. trachomatis prevalence 
patterns by age and sexual risk. the reduction in 
susceptibility to reinfection was estimated at 93% using 
UK data (95% uncertainty interval (Ui)=88%–97%) and 
at 67% using US data (95% Ui=24%–88%). the model-
structure sensitivity analyses affirmed model predictions. 
the immunity-mechanism sensitivity analyses suggested 
a mechanism of susceptibility reduction against 
reinfection or a mechanism of infectious-period duration 
reduction upon reinfection.
Conclusions a strong long-lasting partial immunity 
against C. trachomatis reinfection should be present to 
explain observed prevalence patterns. the mechanism 
of immunity could be either a reduction in susceptibility 
to reinfection or a reduction in duration of infection on 
reinfection. C. trachomatis infection appears to naturally 
elicit a strong long-lasting immune response, supporting 
the concept of vaccine development.

InTrOduCTIOn
Chlamydia trachomatis is a common bacterial 
STI.1 2 Untreated C. trachomatis infection is asso-
ciated with pelvic inflammatory disease, infertility 
and ectopic pregnancy among women, and causes 
urethritis among men.3 4 Most genital C. tracho-
matis infections are asymptomatic.2 The WHO 
estimates that 4.2% of the population aged 15–49 
years is infected.1

An understanding of C. trachomatis natural 
history and its implications on transmission 

dynamics is needed to guide public health strate-
gies for its control.5 Its infection is characterised by 
a prolonged interval between infection acquisition 
and spontaneous cessation of shedding.6 In a study 
among 82 women followed for >5 years, 46% 
of infections were persistent at 1 year, 18% at 2 
years and 6% at 4 years.6 C. trachomatis immunity 
appears to take at least months to acquire.6 7

C. trachomatis control has focused on early detec-
tion and treatment,8 9 but the effectiveness of such 
strategy is subject to debate.9 10 Despite widespread 
testing of young asymptomatic adults and treatment 
of infected individuals,10–13 C. trachomatis preva-
lence in the targeted age group has not changed 
markedly.14 15 It is argued that C. trachomatis early 
detection and treatment hinder the development of 
an adequate immune response, thereby increasing 
susceptibility to reinfection at the individual level, 
reducing herd immunity at the population level and 
counteracting reductions in prevalence.8 16

Since C. trachomatis infection is curable, there 
are ethical constraints to conducting studies that 
directly assess existence/strength of a protective 
immunity against reinfection.17 There is, nonethe-
less, evidence from animal models suggesting short-
term complete immunity and long-term partial 
immunity.18 Partial immunity can take different 
forms, such as reduction in susceptibility to rein-
fection, reduction in infectious-period duration on 
reinfection and/or reduction in infectiousness upon 
reinfection (lower organism load). Indirect evidence 
from human studies supports the concept of protec-
tive partial immunity.17 19 The evidence includes 
rapidly declining prevalence with age, similarity in 
prevalence despite high variability in sexual risk, 
lower organism load with age and repeat infection, 
reduction in concordance rate in couples with age, 
and an apparent treatment attenuation of protective 
immunity.17 20 21

Against this background, we present a novel 
hypothesis-generation approach to assess the exist-
ence, and to provide a plausible effect-size estimate, 
of the partial immunity against reinfection. The 
approach rests on the concept that natural history 
effects at the individual level have manifestations 
at the population level. Starting from popula-
tion-level measures, we used mathematical model-
ling to provide the link between these measures and 
natural history effects.
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Although our approach uses an indirect method, mathematical 
modelling, its strength lies in that it provides an independent 
assessment of this effect that capitalises on existing quality popu-
lation-based data. Specifically, we used two population-level 
distributions, prevalence by age and by sexual risk, to explore a 
population-level ‘signature’ of partial immunity. We also factored 
in the model different biological (eg, various forms of immu-
nity and impact of treatment on immunity development) and 
behavioural (eg, impact of age on sexual behaviour and various 
forms of sexual mixing by age and risk behaviour) mechanisms 
that potentially may explain the observed patterns, irrespective 
of inclusion of an immunity effect. Accordingly, we aimed to 
answer two questions: (1) Is the existence of partial immunity 
against reinfection necessary to explain prevalence patterns by 
age and sexual risk? (2) How strong is the effect of partial immu-
nity likely to be?

METhOds
We constructed a population-based deterministic compartmental 
model to assess the role of long-lasting partial immunity in C. 
trachomatis epidemiology. The model was developed based on a 
review of existing mathematical models for this infection.5 21–26 
The model stratified the population according to infection 
status, immune status, age and sexual risk behaviour, and to 
reduce complexity, sex was not included explicitly in the model, 
nor did the model explicitly distinguish between different forms 
of sexual transmission.

Mathematical model
Model description and C. trachomatis natural history
Online supplementary figure S1 shows a schematic diagram of 
the model. The model assumes full susceptibility to infection at 
birth. Following the first C. trachomatis exposure, infected indi-
viduals enter a non-infectious latent period of 14 days,5 followed 
by an infectious period that can be asymptomatic or symptom-
atic. We assumed that asymptomatic infections comprise 62.5% 
of all infections.5 The infectious period lasts for 300 days for 
asymptomatic infection,5 but only 35 days for symptomatic 
infection, on account of treatment-seeking behaviour.5

We assumed that, by the time of infection clearance, asympto-
matic individuals acquire short-term temporary (90 days) but full 
immunity against reinfection, per the recent Althaus et al model5 
and as informed by animal model studies.17 This is followed by 
long-lasting partial immunity that reduces susceptibility to rein-
fection by a fraction α.17 The latter mechanism is informed by 
a review of evidence from human studies that examined both 
biological (eg, markers of protective immunity) as well as epide-
miological (eg, patterns in different populations) data.17

Meanwhile, symptomatic individuals do not acquire immu-
nity and revert back to the fully susceptible state after clearance 
by treatment—treatment shortens infection duration in symp-
tomatic individuals, thus reducing their chance to develop an 
adequate immune response.5

Details on model structure, equations and parameterisation 
are in the online supplementary materials.

Demography and sexual risk behaviour
The model assumes a stable population with a balance between 
births and deaths. It further incorporates 20 age groups, each 
of which describes a 5-year age band in the population. Demo-
graphics for the UK and the USA were drawn from the United 
Nations Population Division databases.27

Sexual activity lifespan extends in the model from ages 15 to 
74, with sexual activity declining with older age. For each 5-year 
age category, the model incorporates six sexual risk groups 
describing a hierarchy of sexual risk behaviour varying from low 
to high levels. Accordingly, the model accommodates for the 
broad behavioural heterogeneity that typically exists in a given 
population.28–30

Distribution of the population across risk groups is informed 
by data for the number of heterosexual partners during the last 
12 months, as reported in the second UK National Survey of 
Sexual Attitudes and Lifestyles (Natsal-2).21 31 Distribution of the 
level of risk behaviour across risk groups follows a power-law 
function as informed by sexual partnership data32 and analyses 
of complex weighted networks.33–36 Partnership acquisition rate 
in each risk group varies with age as informed by the Natsal-2 
data.37 Coital frequency also varies with age as informed by the 
US data.38

The pattern of sexual mixing between sexually active individ-
uals is determined by two mixing matrices describing the likeli-
hood of a partnership to be formed based on age group or risk 
group.30 39 40 Each matrix describes a mixing continuum varying 
between proportionate mixing (no preferential bias based on age 
or risk group) and full assortativity (partnerships formed exclu-
sively within the same age or risk group).

Details on the inclusion of demography and sexual behaviour 
in the model are in the online supplementary materials.

data sources
The model was parameterised using available data for C. tracho-
matis natural history (online supplementary table S1) and sexual 
behaviour (online supplementary table S1 and S2). The key 
model parameters were based often on the median value of the 
range that was used in published models.5 21–26 Empirical data 
describing the distribution of C. trachomatis prevalence by age 
were obtained from (1) a systematic review of studies assessing 
C. trachomatis prevalence in the UK41 and (2) the US Centers 
for Disease Control and Prevention (CDC) STI database.42 The 
distribution of C. trachomatis prevalence by sexual risk group 
was obtained through Natsal-2 data analysis.21 31

Plan of analysis
We conducted analyses to explore the role of partial immunity 
in explaining observed C. trachomatis epidemiological patterns.

Partial immunity and age-specific and sexual risk-specific 
distributions of C. trachomatis prevalence
We generated model predictions for the age-specific and sexual 
risk-specific distributions of C. trachomatis prevalence in the UK 
at different strengths for the partial immunity, and compared 
these distributions with empirical data. The comparison was 
conducted to assess whether the existence of immunity yields 
enhanced agreement between model predictions and empirical 
data.

Estimation of the strength of partial immunity against reinfection
The strength of the long-lasting partial immunity against reinfec-
tion (α ) was estimated by fitting model predictions to data from 
the following surveys: (1) UK age-specific41 and sexual risk-spe-
cific21 31 C. trachomatis prevalence distributions, and (2) US 
age-specific42C. trachomatis prevalence distribution. No fitting 
was done for the US sexual risk-specific C. trachomatis distri-
bution, as such distribution was not available for the used CDC 
data. The fitting was implemented by minimising the residual 
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Table 1 Summary of description and results of the sensitivity analyses with respect to variations in model structure

sensitivity analysis description result

1. Variation in the distribution of risk behaviour 
across risk groups.*

Explored the impact of variation in the distribution of risk 
behaviour across risk groups by varying (in univariate analysis) 
the parameter σ of the distribution of risk behaviour (online 
supplementary materials), but fixing α at its model-predicted 
baseline value.

The predicted age-specific Chlamydia trachomatis prevalence 
distribution was largely invariable despite the variation in 
the distribution of risk behaviour across risk groups (online 
supplementary figure S2A).

2. Variation in the sexual mixing by age.* Explored the impact of variation in sexual mixing by age (in 
univariate analysis) across the full spectrum starting from 
proportionate mixing-up to fully assortative mixing. This was 
done by varying  eG , the parameter describing the degree of 
assortativity in mixing by age (online supplementary materials).

The predicted age-specific C. trachomatis prevalence 
distribution was largely invariable despite the variation in the 
sexual mixing by age (online supplementary figure S2B).

3. Variation in the sexual mixing by risk.* Explored the impact of variation in sexual mixing by risk (in 
univariate analysis) across the full spectrum starting from 
proportionate mixing-up to fully assortative mixing. This was 
done by varying  eH  , the parameter describing the degree of 
assortativity in mixing by risk (online supplementary materials).

The predicted age-specific C. trachomatis prevalence 
distribution was largely invariable despite the variation in the 
sexual mixing by risk (online supplementary figure S2C).

4. Temporal variation in risk behaviour. Explored the impact of temporal variation in risk behaviour on 
our estimated partial immunity strength by assuming that 10% 
of individuals change their risk group every year.

 α for the UK data was estimated at 93% (95% UI: 89%–95%) 
with an uncertainty analysis median of 93%—similar to the 
original estimate.

5. Removal of latent period in C. trachomatis 
natural history.

Explored the impact of removing the latent period in C. 
trachomatis natural history.

 α for the UK data was estimated at 93% (95% UI: 88%–97%) 
with an uncertainty analysis median of 93%— similar to the 
original estimate.

6. Inclusion of partial immunity for the 
symptomatically infected individuals.

Explored the impact of inclusion of partial immunity for the 
symptomatically infected individuals.

 α for the UK data was estimated at 93% (95% UI: 89%–96%) 
with an uncertainty analysis median of 93%— similar to the 
original estimate.

7. Variation in the duration of the short-term 
temporary but full immunity.

Explored the impact of varying the duration of the short-term 
temporary but full immunity over a range of 0–100 days.

Variation in the short-term temporary immunity had limited 
impact on the estimated effect size of partial immunity (online 
supplementary figure S3).

All sensitivity analyses were applied to the model fit of the UK data.
*Conducted in view of the fundamental ambiguity in defining ’sexual risk’,26 44–46 and done on the prediction for the age-specific C. trachomatis prevalence distribution, since 
this distribution is the most prototypical pattern in C. trachomatis epidemiology.
UI, uncertainty interval.

sum of squares between data points and model predictions. 
Analyses were conducted assuming endemic equilibrium.

The uncertainty intervals (UIs) for α estimates were calcu-
lated through multivariate uncertainty analyses with respect to 
variations in the model’s sexual behaviour structure. This was 
done using Monte Carlo sampling from (conservatively) uniform 
probability distributions, assuming 20% uncertainty around the 
parameters’ point estimates, as informed by the range of avail-
able data and previous modelling studies.29 30 43 Each new set of 
parameters was used to refit C. trachomatis prevalence distribu-
tions, and accordingly estimate α . We implemented 500 uncer-
tainty runs for each α estimation and determined the median and 
mean and associated 95% UI.

Sensitivity analyses with respect to variations in model structure
Several sensitivity analyses were conducted with respect to varia-
tions in model structure. These are summarised in table 1.

Sensitivity analyses with respect to alternative assumptions for the 
mechanism of partial immunity
We assumed, for theoretical simplicity, that the partial immu-
nity mechanism is a reduction in the susceptibility to reinfection. 
However, there is ambiguity about the exact mechanism(s).17 19 20 
Accordingly, we conducted sensitivity analyses exploring the 
impact of two alternative mechanisms on the predicted age-spe-
cific C. trachomatis prevalence distribution: a reduction in 
infectious-period duration upon reinfection and a reduction in 
C. trachomatis infectiousness upon reinfection (lower organism 
load).

Methodological details of these analyses are in the online 
supplementary materials.

rEsulTs
Figure 1A shows the predicted age-specific C. trachomatis prev-
alence distribution for the UK data at different α (the fractional 
reduction in susceptibility to reinfection). With no immunity 
( α = 0% ), it was not possible to generate the typically observed 
distribution where the prevalence is highest in those aged 15–24 
years and declines to <1% by age 30. α must be large enough, 
in the range of 70%–90%, to reproduce this prototypical C. 
trachomatis empirical pattern. Moreover, it was not possible to 
generate the distribution without incorporating the age depen-
dence of sexual behaviour.

Figure 1B shows the predicted age-specific C. trachomatis 
prevalence distribution at different α , but assuming no variation 
in sexual behaviour with age—absence of this variation did not 
lead to a good fit of empirical data.

Figure 1C shows the predicted risk-specific C. trachomatis 
prevalence distribution for the UK data at different α . With 
 α = 0% , the prevalence in high-risk populations was much 
higher than that in low-risk populations, in contrast to empirical 
data that suggest a more even distribution by risk.21 In order to 
generate such more even distribution, α must be large enough 
to substantially lower C. trachomatis prevalence in high-risk 
populations, who are more likely to experience reinfections. Of 
notice that the outlier for risk group 4 may be due to sampling 
variation or to the ambiguity of defining ‘sexual risk’26 44–46—a 
definition based on simply reported number of partners may not 
capture the true risk of infection exposure in the sexual network.

To derive a plausible estimate for the effect size of α , we fitted 
C. trachomatis prevalence distribution by age and by risk for the 
UK data (figure 2A,C and online supplementary tables S3, S4) 
and by age for the US data (figure 2B and online supplementary 
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Figure 1 Chlamydia trachomatis (CT) prevalence in the UK by age and 
by sexual risk under different assumptions for the effect size of partial 
immunity against reinfection (α). Model predictions for (A) age-specific 
distribution of CT prevalence at variable levels of α and assuming age 
dependence of sexual behaviour, (B) age-specific distribution of CT 
prevalence at variable levels of α but with no age dependence of sexual 
behaviour, and (C) sexual risk-specific distribution of CT prevalence 
at variable levels of α for those 18–44 years of age. Empirical data 
(illustrated by ‘*’) were provided from reference 41 for CT prevalence 
by age and from references 21 31 for CT prevalence by sexual risk. 
Distribution of the population across risk groups was based on the 
reported number of heterosexual sex partners during the last 12 months 
in the second National Survey of Sexual Attitudes and Lifestyles.21 31

Figure 2 Model fits for Chlamydia trachomatis (CT) prevalence in 
the UK by age and by sexual risk, and in the USA by age. Model fits 
for (A) age-specific distribution of CT prevalence in the UK, (B) age-
specific distribution of CT prevalence in the USA and (C) sexual risk-
specific distribution of CT prevalence in the UK for those 18–44 years 
of age. Empirical data (illustrated by ‘*’) were provided for the UK from 
references 21 31 41 and for the USA from reference 42.

table S5). The model produced robust fits of these distributions. 
 α for the UK data was estimated at 93% (95% UI=88%–97%) 
with an uncertainty analysis median of 93%. α for the US data 
was estimated at 67% (95% UI=24%–88%) with an uncertainty 
analysis median of 69%.

Table 1 shows the results of the sensitivity analyses with 
respect to variations in model structure. The analyses indicated 
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Figure 3 Sensitivity analyses of the impact of alternative biological 
mechanisms, for the effect of partial immunity, on the model-predicted 
age-specific Chlamydia trachomatis (CT) prevalence in the UK. Model 
predictions for the age-specific CT prevalence, under different levels 
for the effect size of partial immunity (α), assuming a mechanism 
of (A) susceptibility reduction to reinfection, (B) infectious-period 
duration reduction with reinfection or (C) infectiousness reduction 
with reinfection. Empirical data (illustrated by ‘*’) were provided from 
reference.41

that the estimated α is not likely to be affected appreciably by the 
ambiguity in defining sexual risk nor by lack of detailed knowl-
edge of sexual networking in a population.

Figure 3 shows the predicted age-specific C. trachomatis preva-
lence distribution under three distinct assumptions for the mech-
anism of partial immunity: susceptibility reduction (our baseline 
assumption; figure 3A), infectious-period duration reduction 
(figure 3B) and infectiousness reduction (figure 3C). The 
results indicated that a mechanism of infectiousness reduction 
has a limited effect on the age-specific prevalence distribution, 

particularly in older populations, regardless of the immunity 
effect size. Meanwhile, a mechanism of infectious-period dura-
tion reduction affects the age-specific prevalence distribution in 
a similar manner to that of susceptibility reduction.

dIsCussIOn
We explored the role of immunity in C. trachomatis epidemi-
ology using a hypothesis-generation mathematical modelling 
approach. Our results indicated that a strong effect of partial 
immunity against reinfection should be present to explain 
observed prevalence patterns. The immunity effect size, reduc-
tion in susceptibility to reinfection, may also exceed 65%. The 
results further indicated that the mechanism of immunity could 
be either a reduction in susceptibility to reinfection or a reduc-
tion in duration of infection upon reinfection. Observed patterns 
could not be explained by merely an immunity effect on infec-
tiousness (organism load).

The presented analyses highlighted how a natural history 
effect that occurs at the individual level (ie, development of 
partial immunity) expresses itself indirectly as an observed effect 
on prevalence patterns at the population level—thereby facili-
tating a derivation of a plausible estimate for the effect size using 
a population-level mathematical model. The immunity effect led 
to high prevalence in youths, with rapid decline in prevalence 
with age, testifying to age being a strongly predictive risk factor 
for C. trachomatis infection.47 The immunity effect led also to a 
‘dispersion’ effect of more even prevalence distribution by risk 
group—affirming the empirically observed smaller Gini coeffi-
cient for C. trachomatis, compared with gonorrhoea and syph-
ilis.21 48

The observed strong immunity effect is consistent with existing 
direct evidence from animal studies18 and indirect evidence 
from human studies.17 19–21 In the context of previous studies 
on C. trachomatis control,8 16 20 the observed effect suggests 
that control programmes focused on early detection and treat-
ment may not be effective, if they hinder the development of 
an adequate immune response.8 16 20 The roll-out of screening 
in several countries was paralleled by increases in reinfection 
rates that remain unexplained by advances in diagnostic tests, 
screening coverage and sexual behaviour.8 16 49–51 This outcome 
demonstrates how it is difficult to achieve C. trachomatis control 
without probably a vaccine16 52—the observed strong immunity 
effect supports the concept, and may suggest the feasibility, of 
vaccine development. A vaccine that is administered to adoles-
cents, in similar fashion to human papillomavirus vaccination,53 
may have a larger impact in controlling C. trachomatis transmis-
sion, and be more cost-effective, than a screening programme.

The sensitivity analyses of alternative mechanisms for the 
immunity effect indicated that infectiousness reduction cannot 
explain observed patterns (figure 3). Even if this mechanism 
is present biologically, it can affect the overall intensity of C. 
trachomatis transmission in a population, but not as much the 
observed age-specific prevalence distribution. Meanwhile, a 
mechanism of infectious-period duration reduction affects 
this distribution just as susceptibility reduction, and therefore 
provides an alternative plausible explanation for the effect of 
partial immunity. Further work is warranted to investigate which 
of these two mechanisms, or a combination, underlie immunity. 
Of notice that these three mechanisms, to one degree or another, 
could eventually be determined to be in action and simultane-
ously. If so, C. trachomatis immunity may be proven to be more 
influential in the epidemiology of this infection than previously 
thought.
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Key messages

 ► Partial immunity against Chlamydia trachomatis reinfection 
can explain the observed prevalence patterns by age and 
sexual risk.

 ► C. trachomatis infection appears to elicit a strong natural 
immune response that reduces substantially the susceptibility 
to reinfection.

 ► Immunity mechanism can be either a reduction in 
susceptibility to reinfection or a reduction in infectious-period 
duration upon reinfection, or a combination of both.

Limitations may have affected this study. Although an elabo-
rate model was used to capture the complexity of C. trachomatis 
transmission dynamics, the results may depend on the used 
model. We used a frequency-dependent model, but this type of 
model may overestimate immunity effects.54 The model depends 
on availability and representativeness of input data—the α esti-
mate for the USA had a wide UI, as the sexual risk-specific prev-
alence distribution was not available for the used CDC data. 
The sexual risk-specific prevalence distribution for the UK data 
was based on the number of sexual partners, which alone may 
not sufficiently capture sexual risk.26 44–46 55 56 This distribu-
tion, however, was influential in estimating such a strong α for 
the UK data. If the shape of this distribution was less even, we 
would still have estimated strong immunity, but with a smaller 
 α (figure 1). We assumed that symptomatically infected persons 
do not develop partial immunity because of treatment-seeking 
behaviour—a reasonable assumption but with undetermined 
validity.5 Lastly, for sexual mixing, we assumed a specific mix of 
proportionate and assortative mixing since the actual mixing in 
the population is not known.

Despite these limitations, the model was sufficiently complex 
to incorporate the main factors that can affect our research ques-
tions, and produced robust fits for C. trachomatis prevalence by 
age and by risk. None of the biological and behavioural factors 
suspected to affect the study outcome affected the study conclu-
sions, and the different sensitivity analyses affirmed our findings. 
We conducted multivariate uncertainty analyses with respect to 
variations in model structure, rather than using maximum like-
lihood methods, to account for broader uncertainty in the esti-
mated effect size. Although the exact effect size of C. trachomatis 
immunity is yet to be determined with precision, and there was 
a difference between the UK-based and US-based estimates, 
conclusively the results affirmed a strong effect of partial immu-
nity. With sampling variation affecting C. trachomatis prevalence 
distributions in population-based surveys, and in the context 
of fundamental ambiguity in defining ‘sexual risk’,26 44–46 the 
presented approach is not best suited to provide an exact effect 
size, but is sufficient to demonstrate the likely existence of a 
strong partial immunity effect.

In conclusion, we explored the existence of partial immunity 
against C. trachomatis reinfection using an indirect, but novel 
hypothesis-generation approach. Our results indicated that a 
strong immunity effect should be present to explain observed C. 
trachomatis prevalence patterns. These findings are suggestive of 
a strong natural immune response against C. trachomatis infec-
tion, which upon elucidation of its detailed biological mecha-
nisms may have implications for vaccine development.
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