were compared using annualized incidence. The distribution of those flagged as HIV-positive was compared by database.

Results

The best performing case-definition (YI 0.71) was two or more HIV diagnoses in two years in physician claims, or in hospital discharge abstracts; or 14 or more HAART dispensations in two years; or one positive HIV laboratory. Sensitivity, specificity, PPV and NPV was 82.3% (95%CI: 79.1%-85.5%), 86.8% (95%CI: 84.9%-88.7%), 74.1% (95%CI: 70.6%-77.6%), and 91.4% (95%CI: 89.8%-93.1%), respectively. Annualized incidence (2009–2015) calculated from this case-definition was 7.4/100,000 persons (95%CI: 6.8–8.1)); annualized incidence calculated from surveillance data was 7.7/100,000 persons (95%CI: 7.1–8.3). Approximately 76% of cases would have been flagged through a positive laboratory; 43% through pharmaceutical claims; 34% through physician claims; and 11% through hospital abstracts. 95% of cases would have been flagged through the combination of laboratory and pharmaceutical databases. Only 4% of cases were flagged in all four data sources.

Conclusion

Although the combination of four databases produced the most complete prevalence snapshot, laboratory data was the most important contributor. The combination of laboratory and pharmaceutical databases would have identified the predominant majority of cases in our sample. Findings can be used to inform the construction of administrative data cohorts where the availability of population-based data sources may be more limited.

Disclosure

No significant relationships.