Results Ikajurniq builds on best practices in prevention and treatment of STBBIs in Canada, while recognizing both the particular challenges and the known enablers in reaching, testing and treating Inuit with STBBIs in northern communities.

Conclusions Inuit experience high rates of STBBIs and face particular challenges in completing the testing and treatment journey. The enablers described in Ikajurniq can greatly increase the number of Inuit who successfully navigate the STBBI cascade of care.

Disclosure No significant relationships.

ASSOCIATION BETWEEN VAGINAL BACTERIA AND HIV ACQUISITION RISK AMONG AFRICAN WOMEN PARTICIPATING IN THE VOICE STUDY

1Sujatha Srinivasan*, 2Barbra Richardson, 1Jacqueline Wallis, 3Tina Fiedler, 4Noah Hoffman, 4Sean Proll, 5Z Chirenje, 6Edward Livant, 7David Fredricks, 8Sharon Hillier, 9Jeanne Marrazzo. 3Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, USA; 2University of Washington, Biostatistics, Seattle, USA; 4University of Washington, Laboratory Medicine, Seattle, USA; 6University of Washington, Medicine, Seattle, USA; 7University of Alabama, Medicine, Birmingham, USA

Risk factors for HIV acquisition. These include bacterial vaginosis-associated taxon-specific qPCR measurements. Concentrations of five of 12 bacterial taxa associated with HIV risk that were not detected in controls (p=0.0044). Analysis of relative abundance data identified confounders. Generalized Estimating Equation models, and adjusted for potential confounders.

Results Vaginal bacterial diversity among cases was higher than controls (p=0.0044). Analysis of relative abundance data identified 12 bacterial taxa associated with HIV risk that were not previously described. Six of these 12 taxa were selected for taxon-specific qPCR measurements. Concentrations of five of six taxa were significantly associated with increased risk for HIV acquisition. These include bacterial vaginosis-associated bacterium 2 (adjusted odds ratio (aOR)=1.57; 95% CI 0.97, 2.56), Candidate Division TM7 (aOR=2.04; 95% CI 1.14, 3.65), Prevotella amnii (aOR=1.53, 95% CI 0.95, 2.46), Porphyromonas Type 1 (aOR=2.04, 95% CI 1.27, 3.28), and Peptinophilus lacrimalis (aOR=1.55, 95% CI 0.98, 2.44). Dialister micraerophilus was not associated with HIV risk.

Conclusion A sequential PCR approach facilitated the identification of new bacteria associated with increased HIV acquisition risk. Interventions to decrease high-risk bacteria could be explored as one approach to reduce HIV risk in women.

Disclosure No significant relationships.

Abstracts

P587 ASSOCIATION BETWEEN VAGINAL BACTERIA AND HIV ACQUISITION RISK AMONG AFRICAN WOMEN PARTICIPATING IN THE VOICE STUDY

Jennifer Balkus*, 1Sean Proll, 2Johanna Holm, 3Sujatha Srinivasan, 4Darrell Dinwiddie, 5Liam Van Der Pol, 6Noah Hoffman, 7Elliot Lefkowitz, 8James Hughes, 9Barbara Van Der Pol, 10Cosette Wheeler, 11Anna Waid, 12Jeanne Marrazzo, 13Jacques Ravel, 14David Fredricks. 1University of Washington, Seattle, USA; 2University of Maryland, Institute for Genome Sciences, Baltimore, USA; 3Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, USA; 5University of New Mexico – Albuquerque, Albuquerque, USA; 6University of Alabama at Birmingham, Medicine/Infectious Diseases, Birmingham, USA

Background We previously identified seven vaginal bacteria associated with increased HIV acquisition risk among African women using taxon-directed quantitative PCR (qPCR). We sought to extend the search for high-risk bacteria using a sequential PCR approach.

Methods African women participating in a randomized placebo-controlled trial of daily oral vs. vaginal tenofovir-based pre-exposure prophylaxis for HIV (VOICE study) provided vaginal samples. Cases (177 HIV pre-seroconversion visits from 150 women who acquired HIV) and controls (531 visits from 436 women who remained HIV uninfected) were matched by study arm and site. The vaginal microbiota was characterized using 16S rRNA gene PCR and sequencing to identify novel high-risk taxa. A sequential PCR approach facilitated the identification of high-risk bacteria.

Results In a sequential PCR approach, we sought to extend the search for high-risk bacteria using a comparative study across four laboratories.

Methods A central laboratory prepared and distributed a specimen set including vaginal swabs from four women with a range of Nugent scores (in vivo samples), three mock communities containing BV-associated bacteria, and positive and negative controls. For in vivo and mock communities, each laboratory was provided with DNA extraction, PCR amplification, and bioinformatics approaches to taxonomic assignment. To better understand sources of variation in describing the vaginal microbiota, we conducted a comparative study across four laboratories.

Methods A central laboratory prepared and distributed a specimen set containing vaginal swabs from four women with a range of Nugent scores (in vivo samples), three mock communities containing BV-associated bacteria, and positive and negative controls. For in vivo and mock communities, each laboratory was provided with DNA extraction, PCR amplification, and bioinformatics approaches to taxonomic assignment. To better understand sources of variation in describing the vaginal microbiota, we conducted a comparative study across four laboratories.

Methods A central laboratory prepared and distributed a specimen set containing vaginal swabs from four women with a range of Nugent scores (in vivo samples), three mock communities containing BV-associated bacteria, and positive and negative controls. For in vivo and mock communities, each laboratory was provided with DNA extraction, PCR amplification, and bioinformatics approaches to taxonomic assignment. To better understand sources of variation in describing the vaginal microbiota, we conducted a comparative study across four laboratories.

Background The most common approach for describing bacterial communities is amplification of a taxonomically informative gene (e.g. 16S rRNA) followed by amplicon sequencing and taxonomic assignment of the sequences. Variability can arise from numerous steps in this process including DNA extraction, PCR amplification, and bioinformatics approaches for taxonomic assignment. To better understand sources of variation in describing the vaginal microbiota, we conducted a comparative study across four laboratories.

Methods A central laboratory prepared and distributed a specimen set containing vaginal swabs from four women with a range of Nugent scores (in vivo samples), three mock communities containing BV-associated bacteria, and positive and negative controls. For in vivo and mock communities, each laboratory was provided with DNA extraction, PCR amplification, and bioinformatics approaches to taxonomic assignment. To better understand sources of variation in describing the vaginal microbiota, we conducted a comparative study across four laboratories.

Methods A central laboratory prepared and distributed a specimen set containing vaginal swabs from four women with a range of Nugent scores (in vivo samples), three mock communities containing BV-associated bacteria, and positive and negative controls. For in vivo and mock communities, each laboratory was provided with DNA extraction, PCR amplification, and bioinformatics approaches to taxonomic assignment. To better understand sources of variation in describing the vaginal microbiota, we conducted a comparative study across four laboratories.

Methods A central laboratory prepared and distributed a specimen set containing vaginal swabs from four women with a range of Nugent scores (in vivo samples), three mock communities containing BV-associated bacteria, and positive and negative controls. For in vivo and mock communities, each laboratory was provided with DNA extraction, PCR amplification, and bioinformatics approaches to taxonomic assignment. To better understand sources of variation in describing the vaginal microbiota, we conducted a comparative study across four laboratories.

Methods A central laboratory prepared and distributed a specimen set containing vaginal swabs from four women with a range of Nugent scores (in vivo samples), three mock communities containing BV-associated bacteria, and positive and negative controls. For in vivo and mock communities, each laboratory was provided with DNA extraction, PCR amplification, and bioinformatics approaches to taxonomic assignment. To better understand sources of variation in describing the vaginal microbiota, we conducted a comparative study across four laboratories.

Background The most common approach for describing bacterial communities is amplification of a taxonomically informative gene (e.g. 16S rRNA) followed by amplicon sequencing and taxonomic assignment of the sequences. Variability can arise from numerous steps in this process including DNA extraction, PCR amplification, and bioinformatics approaches for taxonomic assignment. To better understand sources of variation in describing the vaginal microbiota, we conducted a comparative study across four laboratories.

Methods A central laboratory prepared and distributed a specimen set containing vaginal swabs from four women with a range of Nugent scores (in vivo samples), three mock communities containing BV-associated bacteria, and positive and negative controls. For in vivo and mock communities, each laboratory was provided with DNA extraction, PCR amplification, and bioinformatics approaches to taxonomic assignment. To better understand sources of variation in describing the vaginal microbiota, we conducted a comparative study across four laboratories.

Methods A central laboratory prepared and distributed a specimen set containing vaginal swabs from four women with a range of Nugent scores (in vivo samples), three mock communities containing BV-associated bacteria, and positive and negative controls. For in vivo and mock communities, each laboratory was provided with DNA extraction, PCR amplification, and bioinformatics approaches to taxonomic assignment. To better understand sources of variation in describing the vaginal microbiota, we conducted a comparative study across four laboratories.

Methods A central laboratory prepared and distributed a specimen set containing vaginal swabs from four women with a range of Nugent scores (in vivo samples), three mock communities containing BV-associated bacteria, and positive and negative controls. For in vivo and mock communities, each laboratory was provided with DNA extraction, PCR amplification, and bioinformatics approaches to taxonomic assignment. To better understand sources of variation in describing the vaginal microbiota, we conducted a comparative study across four laboratories.

Methods A central laboratory prepared and distributed a specimen set containing vaginal swabs from four women with a range of Nugent scores (in vivo samples), three mock communities containing BV-associated bacteria, and positive and negative controls. For in vivo and mock communities, each laboratory was provided with DNA extraction, PCR amplification, and bioinformatics approaches to taxonomic assignment. To better understand sources of variation in describing the vaginal microbiota, we conducted a comparative study across four laboratories.

Methods A central laboratory prepared and distributed a specimen set containing vaginal swabs from four women with a range of Nugent scores (in vivo samples), three mock communities containing BV-associated bacteria, and positive and negative controls. For in vivo and mock communities, each laboratory was provided with DNA extraction, PCR amplification, and bioinformatics approaches to taxonomic assignment. To better understand sources of variation in describing the vaginal microbiota, we conducted a comparative study across four laboratories.

Methods A central laboratory prepared and distributed a specimen set containing vaginal swabs from four women with a range of Nugent scores (in vivo samples), three mock communities containing BV-associated bacteria, and positive and negative controls. For in vivo and mock communities, each laboratory was provided with DNA extraction, PCR amplification, and bioinformatics approaches to taxonomic assignment. To better understand sources of variation in describing the vaginal microbiota, we conducted a comparative study across four laboratories.