Prevalence and clinical features of *M. genitalium*.

Methods *M. genitalium* strains were isolated from urinary sediment of *M. genitalium*-positive urine-specimens from Japanese men. The antimicrobial susceptibility testing was examined by the cell-culture method. The tested antimicrobials were azithromycin (AZM), clarithromycin (CLR), doxycycline (DOX), minocycline (MIN), ciprofloxacin (CIP), levofloxacin (LVX), moxifloxacin (MOX) and sitafloxacin (STFX).

Results Total 14 *M. genitalium* strains were isolated from Japanese patients. Four strains were isolated in 2003, and other 10 strains were isolated in 2017 and 2018. MIC50 and MIC90 were ≥16 mg/L for AZM, ≥16 mg/L and ≥16 mg/L for CLR, .5 mg/L and 1 mg/L for DOX, 0.25 mg/L and 0.5 mg/L for MIN, 8 mg/L and ≥16 mg/L for CIP, 4 mg/L and ≥16 mg/L for LVX, 1 mg/L and 4 mg/L for MOX and 0.125 mg/L and 0.5 mg/L for STFX, respectively. There was no macrolide-resistant strains in 2003, but 9 strains isolated in 2017 and 2018 were resistant to macrolide. Seven strains had high MICs more than 1 mg/L for MOX, but only one strain had high MIC 1 mg/L for STFX. Except for one strain which had MIC 2 mg/L for DOX, MICs of other strains for DOX or MIN were shown between 0.125 mg/L and 1 mg/L.

Conclusion Among 14 strains, 7 strains had high MICs for macrolide and MOX. In Japan, multidrug-resistant *M. genitalium* strains were increasing. Limitation of this study was that we tried to isolated *M. genitalium* strains form patients with treatment-failure cases by macrolide or fluoroquinolone in 2017 and 2018.

Disclosure No significant relationships.

P614 MACROLIDE RESISTANCE IN MYCOPLASMA GENITALIUM IS STRONGLY ASSOCIATED WITH STI CO-INFECTION

Martina Furegato, Claire Broad, Laura Phillips, Emma Hening De-Allis, Liqing Zhou, Mark Harrison, Sebastian Fuller, Emma Harding-Esch, Tariq Sadq, George's, University of London, Applied Diagnostic Research and Evaluation Unit, Institute for Infection and Immunity, London, UK; St George's, University of London, Applied Diagnostic Research and Evaluation Unit, London, UK; St George's, University of London, Applied Diagnostic Research and Evaluation Unit (ADREU), Institute for Infection and Immunity, London, UK

Background Co-infections can compromise empirical therapy when treating genital discharge syndrome (GDS). In the UK, lack of testing for *Mycoplasma genitalium* (MG), a common cause of GDS, is particularly challenging because of increasing rates of macrolide antimicrobial resistance (AMR). We calculated prevalence of MG co-infections, macrolide resistance and associated risk factors in a diverse symptomatic sexual health clinic (SHC) population.

Methods SHC attendees in England aged ≥16 years, symptomatic of an STI provided: vulvovaginal swabs (females), first void urine (men-who-have-sex-with-women (MSW)) and men-who-have-sex-with-men (MSM)), pharyngeal and rectal swabs (MSM). Routine clinic *Chlamydia trachomatis* (CT)/*Neisseria gonorrhoeae* (NG) results were obtained and PCR used for MG detection. Macrolide resistance was determined using Sanger sequencing. Unadjusted and risk factor adjusted odds ratios (ORs) for being MG resistant were derived using logistic regression models.

Results Prevalence of MG was 9.5% across all groups and 6.5% (95%CI:4.6–9.9), 12.8% (9.1–17.3) and 12.3% (8.5–17.1) in females, MSW and MSM, respectively (p<0.005). Among patients infected with CT and/or NG, co-infection with MG was 18.7% (8.9–32.6), 9.5% (3.6–19.6) and 4.9% (1.4–12.2), respectively (p<0.05). Among MG positives, macrolide resistance was 62.1% (42.3–79.3), 77.4% (58.9–90.4), and 90.9% (70.8–98.9), respectively. In univariate analysis, being MSM (OR:3.3[95%CI:1.60–5.88]), being of black (3.02[1.66–5.47]) compared to white ethnicity, reported more than one regular partner (3.19[1.25–8.13]), having an STI co-infection (10.13 [4.62–22.25];p<0.001) and a recent STI diagnosis (2.09[1.18–3.68];p<0.005) were associated with macrolide resistant MG. In multivariable analysis, being MSM (aOR:3.31[1.44–7.61]), being of black ethnicity (3.31[95%CI:1.58–6.94]; p<0.005), more than one regular partner (3.32[1.21–9.08];