who were tested for GC/CT but not empirically treated. Either GC or CT was positive at 90 (14.7%) visits. Median age and race/ethnicity did not differ between the groups. Mean and median time to treatment for GC/CT decreased from 6 and 4 days prior to implementing GeneXpert™, to 1.7 and 0 days for those tested with the POC test (p<0.001).

Conclusion Prevalence of GC and CT was high among asymptomatic patients on PrEP. The introduction of POC testing decreases time to treatment, reducing duration of infectivity and potentially preventing ongoing transmissions.

Disclosure No significant relationships.

[Abstracts]

014.5 CHLAMYDIA TRACHOMATIS TESTING: A NATIONAL EVALUATION OF INTERNET BASED SELF-SAMPLING IN SWEDEN

1Björn Herrmann*, 1Joakim Söderqvist, 2Lisa Stark, 3Karolina Gulliby, 4Roger Karlsson, 5Maria Wikman. 1Uppsala University Hospital, Clinical Bacteriology, Uppsala, Sweden; 2Ryhall County Hospital, Department of Laboratory Medicine, Jonköping, Sweden; 3Region Gävleborg, Centre for Research and Development Uppsala University, Gävle, Sweden; 4University of Umeå, Department of Public Health and Clinical Medicine, Umeå, Sweden; 5University of Umeå, Department of Virology, Umeå, Sweden

Background Chlamydia trachomatis (CT) testing in Sweden is free of charge and now exceeds 600,000 annual tests in a population of 10 million. These tests include internet-based self-sampling tests, a service that gradually has been implemented as a part of routine diagnostics in all 21 counties. To our knowledge Sweden is the country with the highest coverage of internet based self-sampling for CT. This study evaluates the diagnostic outcome for self-sampling.

Methods Requests for both self-sampling at home and clinic based sampling for CT-testing were sent to the laboratories in 18 of 21 counties. All 18 counties provided data on self-sampling in 2017 and 12 counties (representing 80% of the population) provided data on both self-collected samples at home and clinic based testing for the years 2013 to 2017.

Results The proportion of self-sampling increased from 12.9% in 2013 to 17.8% in 2016 when compared to national chlamydia test figures. Between 23% and 26% of delivered test kits were never sent back for analysis during 2013–2017. After adjustment phone ownership was associated with age (aOR:1.48;95%CI1.42–2.03); and group discussion (n=9). We piloted Zenzele, a simulated online pathway with n=30 individuals aged 18–30 attending a rural clinic. The Zenzele application supported an audio-visual guide in isiZulu and English; a timer to support self-testing according to the manufacturer guidelines; graphing the test using the smartphone camera and providing an automated interpretation of the result; and post-test health promotion and linkage to care.

Results 75.6% of 13–35-year-olds owned a mobile phone. After adjustment phone ownership was associated with age (aOR:1.48;95%CI1.42–2.54); and recent HIV test (aOR:1.64;95%CI 1.33–2.03); and recent HIV test (aOR:1.33;1.09–1.62). Interviews suggested that the mobile-phone enables HIV-self testing was broadly acceptable to users and providers. During the pilot study, everyone completed the self-test and received a result, the majority without resorting to the online support. The one participant testing positive was successfully linked to care. Post-pilot interviews found that young people liked the privacy and convenience and valued the availability of a hotline nurse. Main challenges were waiting 20 minutes to receive the test results and variable digital literacy.

Conclusion Mobile-phone enabled HIV self-testing combined the advantages of self-testing with provision of live support for those who struggle with the test, or who test positive. It provides the prospect of safe, decentralized, de-medicalised HIV care and prevention, including PrEP.

Disclosure No significant relationships.