Mycoplasma genitalium macrolide and fluoroquinolone resistance in pregnant women in Papua New Guinea

Mycoplasma genitalium is a sexually transmitted bacterium that colonises the human urogenital tract and in pregnant women has been associated with adverse pregnancy and birth outcomes. In pregnancy, the prevalence of M. genitalium is estimated to be 0.9% (95% CI 0.6% to 1.4%) in high-income settings and 12.5% in individual studies in low- and middle-income-countries. Globally, M. genitalium antimicrobial resistance (AMR) continues to escalate, and despite rising rates of AMR the prevalence of macrolide and fluoroquinolone resistance in M. genitalium has not been widely studied among pregnant women. Treatment of M. genitalium during pregnancy with selected antimicrobials such as macrolides is recommended, while tetracyclines are contraindicated and caution is recommended for fluoroquinolones, highlighting the potential issues surrounding available/effective antibiotics for this pathogen during pregnancy. In Papua New Guinea (PNG), macrolides and fluoroquinolones are routinely used for treatment of STIs and hence we aimed to characterise M. genitalium AMR in pregnant women.

We screened 69 M. genitalium-positive urine samples obtained from women attending their first antenatal clinic visit at five health facilities in Madang Province (PNG) between 2018 and 2019, enrolled in the control arm of a randomised controlled trial in PNG, the Women And Newborn Trial of Antenatal Interventions and Management. Confirmatory PCR was performed to verify the presence of M. genitalium in all 69 samples. Samples with positive results were then tested for the presence of AMR using targeted PCR assays. Macrolide and fluoroquinolone resistance/susceptibility markers were determined using previously published assays (online supplemental file). Stata V15.1 was used to calculate the proportion of samples with resistance markers, with 95% exact binomial CI calculated using the Clopper-Pearson method. Where there were zero events, we give the 97.5% CI as the upper limit.

From the five study sites, all 69 samples that were initially reported to be positive for M. genitalium were confirmed as positive by repeat PCR testing. Of these, 58 (84.1%) samples were successfully characterised for macrolide resistance, while 54 (78.3%) were successfully characterised for fluoroquinolone susceptibility/resistance (table 1). In summary, no samples with available results harboured macrolide resistance mutations (0.0%, 97.5% CI 0.0% to 6.2%) or the S83I fluoroquinolone resistance mutation (0.0%, 97.5% CI 0.0% to 6.6%), and all 54 samples were characterised as fluoroquinolone-susceptible (S83 wild-type).

While data on M. genitalium AMR remain limited in many regions, including in low-income countries of the Western Pacific region, our findings indicate no evidence of macrolide or fluoroquinolone resistance in PNG. This further supports the findings of two previous studies of M. genitalium in PNG (78 pregnant women) and Solomon Islands (56 non-pregnant women) that also reported no macrolide resistance. Some of the reasons behind the lack of resistance in M. genitalium in these regions may include the fact that current STI treatment guidelines in PNG do not stipulate testing and treatment of M. genitalium in symptomatic persons. Other studies have identified that incorrect screening practices leading to treatment with macrolides have contributed to M. genitalium’s increasing resistance to macrolides. Given that both macrolides and fluoroquinolones are prescription drugs in PNG, their use in treating STIs and other infections is highly regulated. These drugs are not available for use in self-medication and so the repeated consumption/use of these drugs is not likely to be driving the selection of resistance in PNG, as has been suggested in other regions of the world.

From an STI management perspective, the clinical symptoms of M. genitalium infection are not distinct nor fully understood, as M. genitalium can be found in conjunction with other STIs, including

Table 1 Results for macrolide and/or fluoroquinolone resistance in Mycoplasma genitalium isolates (N=69)

<table>
<thead>
<tr>
<th>Study sites (location) (N=69)</th>
<th>Samples (n)</th>
<th>Average Ct value in M. genitalium PCR</th>
<th>SpeedX ResistancePlus assay Macrolide resistance</th>
<th>TaqMan S83I and S833 assay Fluoroquinolone resistance</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site 1 (rural), n=17</td>
<td>15</td>
<td>34.8</td>
<td>Not detected</td>
<td>Detected</td>
<td>Not detected</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>39.9</td>
<td>Not detected</td>
<td>No amplification</td>
<td>No amplification</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>38.5</td>
<td>No amplification</td>
<td>No amplification</td>
<td>No amplification</td>
</tr>
<tr>
<td>Site 2 (urban), n=11</td>
<td>6</td>
<td>35.5</td>
<td>Not detected</td>
<td>Detected</td>
<td>Not detected</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>37.9</td>
<td>Not detected</td>
<td>No amplification</td>
<td>No amplification</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>38.9</td>
<td>No amplification</td>
<td>No amplification</td>
<td>No amplification</td>
</tr>
<tr>
<td>Site 3 (rural), n=11</td>
<td>8</td>
<td>36.4</td>
<td>Not detected</td>
<td>Detected</td>
<td>Not detected</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>38.5</td>
<td>Not detected</td>
<td>No amplification</td>
<td>No amplification</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>38.5</td>
<td>No amplification</td>
<td>No amplification</td>
<td>No amplification</td>
</tr>
<tr>
<td>Site 4 (urban), n=11</td>
<td>8</td>
<td>36.8</td>
<td>Not detected</td>
<td>Detected</td>
<td>Not detected</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>39.2</td>
<td>Not detected</td>
<td>No amplification</td>
<td>No amplification</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>34.2</td>
<td>No amplification</td>
<td>Detected</td>
<td>Not detected</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>36.5</td>
<td>No amplification</td>
<td>No amplification</td>
<td>No amplification</td>
</tr>
<tr>
<td>Site 5 (rural), n=19</td>
<td>16</td>
<td>36.1</td>
<td>Not detected</td>
<td>Detected</td>
<td>Not detected</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>39.5</td>
<td>No amplification</td>
<td>No amplification</td>
<td>No amplification</td>
</tr>
</tbody>
</table>

Detected: sample was tested and we achieved an evaluable result (eg, no macrolide resistance observed and/or fluoroquinolone susceptibility was confirmed). No amplification: sample was tested; however, no evaluable result was obtained. Characterised: sample was successfully characterised by both assays. Not characterised: sample was not evaluable by both assays. Partially characterised: sample was successfully characterised by one assay.

*Wild-type (S83 sequence, no mutation) indicates fluoroquinolone susceptibility.
gonorrhoea and chlamydia. In PNG, symptomatic patients often present with more than one curable STI. In this setting, the targeted testing and treatment for specific STIs is not routine and instead syndromic management of STIs is the standard of care. Resource-constrained health facilities throughout PNG use a single-dose cocktail of antimicrobials, including augmentin, amoxicillin, probenecid, tinidazole and azithromycin/erythromycin. An increase in presumptive treatment of these infections could result in the overuse of macrolides, which could indirectly lead to the development of AMR in M. genitalium. Additionally, asymptomatic women in PNG are less likely to attend sexual health clinics and therefore unlikely to receive either macrolides or fluoroquinolones, reducing the potential for de novo AMR.³

It is important to report on findings where AMR has not been detected to reduce the risk of overestimation of M. genitalium resistance in these settings. Future studies of M. genitalium AMR in PNG and similar settings are warranted, given the potential for import of resistant infections or for de novo resistance, if the use of macrolides and fluoroquinolones for reproductive tract infections increases.

Marinjho E Jonduo, 1,2 Andrew J Vallely, 1,2 David M Whiley, 1,4 Michaela A Riddell, 1,2 William Pomat, 1 Nicola Low, 1,5 Emma L Sweeney 1, 5

1Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
2The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
3Centre for Clinical Research, The University of Queensland Faculty of Medicine, Herston, Queensland, Australia
4Central Laboratory, Pathology Queensland, Herston, Queensland, Australia
5Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland

Correspondence to Dr Emma L Sweeney, Centre for Clinical Research, The University of Queensland Faculty of Medicine, Herston, Queensland, Australia; e.l.sweeney@uq.edu.au

Twitter Nicola Low @nicolamlow

Contributors MEJ and ES performed testing and data collection. MEJ prepared the first draft of the manuscript and data analysis. ES, AV, DMW NL, MAR and WP contributed to the analysis of results and subsequent drafts of the manuscript.

Funding The main trial was funded by DFID/MRC/Wellcome Trust Joint Global Health Trials (JGHT) (grant MR/N006089/1), the National Health and Medical Research Council (NHMRC) Australia (grant 1084429), and the Swiss National Science Foundation (SNSF) (grant IZ0Z2I_160909/1) (ISRCTN number: ISRCTN37134032).

Competing interests DMW and ES report research funding from SpeeDx. SpeeDx kindly provided the ResistancePlus MG kit for use in this study.

Patient consent for publication Not required.

Ethics approval This study involves human participants and was approved by the Papua New Guinea Institute of Medical Research (IRB 1608) and the PNG Medical Research Advisory Committee (MRAC 16.24). Participants gave informed consent to participate in the study before taking part.

Provenance and peer review Not commissioned; internally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access

This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/

© Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY. Published by BMJ.

Additional supplemental material is published online only. To view, please visit the journal online (http://dx.doi.org/10.1136/sextrans-2022-055552).

To cite Jonduo ME, Vallely AJ, Whiley DM, et al. Sex Transm Infect Month 2022 Vol 0 No 0

References

To cite Jonduo ME, Vallely AJ, Whiley DM, et al. Sex Transm Infect Month 2022 Vol 0 No 0

Received 16 June 2022
Accepted 16 July 2022

Sex Transm Infect 2022;0:0–0.
1 **Supporting information**

2 **Specimens**

3 Stored midstream urine samples, collected from women attending their first antenatal clinic visit at five health facilities in Madang Province (PNG) between 2018 and 2019 were de-identified and stored at -80 °C and transported to the University of Queensland Centre for Clinical Research (UQCCR, Brisbane, Australia) for analysis. We identified 69 *M. genitalium* positive samples (unpublished data) from this cross-sectional study and further analysed them as part of this study.

4 Urine samples were thawed at room temperature and nucleic acid extracted using the Qiagen DSP virus/pathogen midi kit on the QIAsymphony SP/AS platform (Qiagen, Australia), according to manufacturers’ instructions with the Complex400-V3 DSP protocol.

5 **TaqMan Probe-based PCR assays**

6 i) *MgPa* screening: *M. genitalium* primers and probe from a previous publication were used to detect *M. genitalium* within the clinical samples from this study.\(^1\) In brief, reactions consisted of 12.5 µl Quantitect Probe mastermix (Qiagen), 10pmol of each primer, 0.2 µM probe, 5 µL of nucleic acid and PCR-grade water for a total volume of 25 µl. Samples were cycled using the Rotorgene 6000 (QIAGEN, Australia) real-time PCR instrument using: initial denaturation at 95°C for 15 mins, followed by 50 cycles of 95°C for 15 sec and 60 °C for 60 sec.

7 ii) Fluoroquinolone resistance assay: *M. genitalium*-positive samples were screened for the presence of *parC* fluoroquinolone susceptibility and resistance markers using a previously developed assay.\(^2,3\) Reactions included 10 µl SensiFast Probe master mix, 0.5 µM of forward and reverse primers, 0.2 µM of S83 wildtype (FAM-labelled) and S83I (G248T; HEX-labelled) probes and 3 µL of nucleic acid extract in a total reaction volume of 20 µL. Each reaction included 5 µl nucleic acid extract and...
15µl of the prepared TaqMan mastermix and analysed using the Applied Biosystems 7500 Fast Dx
Real-Time PCR instrument (Applied Biosystems®, Australia) using the following conditions: an
initial hold at 95 °C for 5 minutes, followed by 50 cycles of 95 °C for 15s and 60 °C for 60s,
acquiring data for both fluorescent probes on the annealing/ extension step.

SpeeDx ResistancePlus® MG PCR assay (Macrolide resistance)

A commercial qualitative real-time PCR assay was used to identify *M. genitalium* and detect the five most
common mutations in the 23S rRNA gene (A2058G, A2059G, A2058T, A2058C, and A2059C,
Escherichia coli numbering) that are associated with resistance to azithromycin (a macrolide antibiotic).

According to the manufacturer’s instructions, each reaction constituted of 10 µl of Plex mastermix (2x),
1 µL of 23S mix, 1 µL control mix, 5 µL of nucleic acid extract in a total reaction volume of 20 µL. The
reaction was analysed using the Applied Biosystems 7500 Fast Dx Real-Time PCR instrument (Applied
Biosystems®, Australia) using the following conditions: initial denaturation of 95°C for 2min, followed
by a 10 cycle touch-down cycling (initial denaturation at 95 °C for 5 seconds (sec), then 61°C – 56.5°C (-
0.5 °C per cycle) for 30 sec) followed by 40 cycles of 95 °C for 5 sec and 52 °C for 40 sec (data
acquired). The selected channels for data acquisition included: FAM (*MgPa* gene), JOE (23S rRNA
mutation) and TAMRA (Extraction control).

Controls for PCR assays:

Well-characterised *M. genitalium*-positive clinical samples harbouring macrolide and fluoroquinolone
resistance markers served as controls in all PCR assays, and nuclease free water in place of nucleic acid
served as negative controls for all assays.

Reference

1. Jensen JS, Björnelius E, Dohn B, Lidbrink P. Use of TaqMan 5’ nuclease real-time PCR for
quantitative detection of Mycoplasma genitalium DNA in males with and without urethritis who were
