Table 1. Summary table of included studies (n=37) and the self-sampling intervention evaluated.

Reference	Study Design	Sample size	Country	Study population	Type of digital intervention	Sampling site	Intervention description
Arias et al. 2016 ¹	Cross-sectional DAS	189	Canada	Women who visited the youth street clinic or the abortion clinic	None	Vaginal	Participants were given the choice between self-sampling or conventional sampling by physician.
Bernstein et al. 2011 ²	Cross-sectional DAS	480	USA	English-speaking MSM	None	Pharyngeal	Participants presenting to the clinic were tested using conventional testing and then asked to perform self-sampling without examiner present.
Berry and Stanley 2017 ³	Cross-sectional DAS	1306	UK	Men visiting a sexual health clinic	None	Meatal	Participants were requested to provide a self-sampled swab and a urine sample for conventional testing.
Camus et al. 2021 ⁴	Cross-sectional DAS	1028	France	Women visiting STI clinics	None	Vaginal	Women presenting with vaginal/cervical sampling indications were invited to participate to test the non- inferiority of self-sampling compared to conventional sampling by clinician.
Chai et al. 2010 ⁵	Cross-sectional	501	USA	Men≥14 years	Website-based	Urine and urethral	Participants ordered free- sampling kits online and were provided with a questionnaire.
Charin et al. 2021 ⁶	Cross-sectional	5061 returned kits	UK	Asymptomatic cisgender MSMs	Website-based	Rectal, pharyngeal and urine	Self-testing kits results were analysed from an administrative database to determine prevalence of extra- genital CT/GC.

Chernesky et al. 2014 ⁷	Cross-sectional	562	Canada	Women attending a gynaecology clinic or youth health clinic	None	Vaginal and cervical	Participants were asked to self- sample a vaginal swab and two conventional swabs were taken.
Chinnock et al. 2020 ⁸	Cohort DAS	533	USA	Emergency department attendees (Spanish- and English-speaking)	None	Vaginal	Participants were given the option to provide a self-sample in addition to conventional testing.
Conejero et al. 2013 ⁹	Cross-sectional	344	Chile	Women aged 18- 25 who are sexually active and not pregnant or menstruating at the time of the study	None	Vaginal	Participants who attended the clinic were given a self- sampling test and surveyed.
De Baetselier et al. 2019 ¹⁰	Cohort DAS	213	Belgium	MSM using PrEP	None	Urine	Participants were tested using conventional testing at 3 biological sites and asked to self-sample at home.

Dukers-Muijrers et al. 2020 ¹¹	Cohort	4916	the Netherlands	Women, who were 18 years or older, diagnosed with a vaginal or rectal CT infection during the inclusion period, and negative for HIV, syphilis, and GC	Online questionnaire and text messages	Vaginal and rectal	Participants were communicated a website link to the study via a text message. They self-collected at home or at the clinic and received reminder texts during the length of the study.
Estcourt et al. 2017 ¹²	Cross-sectional DAS	2143	UK	Anyone aged 16– 24 years and able to read and understand English	Website and text	Urine (males) or vulvovaginal (females)	Participants were given the choice to access all care online or request in-person counselling/treatment at multiple steps of the pathway.
Galvez et al. 2021 ¹³	Cohort	206	Peru	Women between 18 and 50 years of age	None	Endocervical	Participants conducted a self- sampled test and conventional test at the clinic. They were asked to fill a questionnaire.
Grabert et. al 2022 ¹⁴	Cross-sectional DAS	399	Kenya	FSWs with and without HIV	None	Vaginal	Women who engage in sex work were randomized to using wet and dry brushes sampling methods compared to conventional sampling to determine test positivity.
Grandahl et al. 2020 ^{15 16}	Cross-sectional	1785	Sweden	Anyone over the age of 15	Website-based	Urine, vagina, cervix, rectum, throat, other	Participants ordered a free self- sampling kit and filled a questionnaire on demographics, behaviour and about their experience with the test.
Habel et al. 2018 ¹¹	Cross-sectional	3082	USA	Male and female university students	None	Urine (men), vaginal (women)	Students accessing the healthcare centre could request a self-testing option as opposed to conventional testing and were surveyed.

Harvey-Lavoie et al. 2021 ¹⁷	Cross-sectional	1179	Canada	Cis- and trans- GBMs	None	Rectal, pharyngeal and urine	Respondent driven sampling was used to recruit GBM who self-sampled to detect CT/NG. Prevalence estimates of CT/NG, overall and by anatomical site were calculated and respondent-driven sampling-adjusted.
Holland-Hall et al. 2002 ¹⁸	Cross-sectional	133	USA	Juvenile correctional facility detainees aged 12-17 years	None	endocervical	Participants were tested by conventional testing and/or invited to perform a self-test swab.
Kanji et al. 2016 ¹⁹	Cross-sectional DAS	606	Canada	Female STI clinic attendees aged 15 to 52 years from three Alberta clinics	None	Urine and endocervical	Participants accessing the clinic were invited to self-collect a sample or by a nurse.
Ladd et al. 2014 ²⁰	Cross-sectional	205	USA	Women who returned rectal testing kits ordered through a website	Website-based	Vaginal and rectal	Participants ordered the rectal and vaginal free-sampling kits online and were provided with a questionnaire.
Leenen et al. 2020 ^{21 22}	Cross-sectional	129	Netherlands	Dutch-speaking HIV positive MSM 18 years of age or older	Text messaging	Oral, anorectal, urinal	Home sampling kits were offered to clinic patients and text-message reminders were sent. Results were communicated via text or phone call.
Lippman et al. 2007 ¹⁵	RCT	818	Brazil	Low-income women	None	Vaginal	Participants were randomized to receive home-based collection kits or clinic based self collection and conventional testing.

Lockhart et al. 2018 ²³	Cohort DAS	350	Kenya	Female sex workers	None	Cervicovaginal	Participants self-collected a sample and healthcare provider collected a sample.
Mabonga et al. 2021 ²⁴	Cross-sectional	363	Uganda	People living with HIV 14 years and older	None	Vaginal and/or urine	Participants were asked to provide a sample and a questionnaire.
Masek et al. 2009 ²⁵	Cross-sectional DAS	2000	USA	Anyone who accessed the website, no restrictions provided	Internet-based kit request and delivery of results	Vaginal	Self-sampling kits and questionnaires were ordered by participants through a website and shipped for testing and results were communicated by phone.
McCartney et al. 2022 ²⁶	Cross-sectional	23	Brazil	Transgender women	None	Rectal, urethral, vaginal pharyngeal and urine	Consecutive potential participants from an existing cohort study were invited interview to determine the acceptability and practicability of mucosal STI screening.
Nodjikouambaye et al. 2019 ²⁷	Cross-sectional DAS	251	Chad	Adult women	None	Vaginal	Participants randomized to a conventional testing with cervical swab or self-sampling with a veil.
Perkins et al. 2013 ²⁸	Cross-sectional	514	USA	HIV negative adults	None	Urine, throat and/or rectal	Self-sample swabs were completed by participants, and they filled a survey.
Plattteau et al. 2022 ²⁹	Cross-sectional	154	Belgium	Male clients of sex workers	Online questionnaire and text message communication of results	Rectal and urine	Time Location Sampling was used to recruit clients of sex workers who were interested in getting tested for STIs to determine positivity.

Rahib et al. 2022 ³⁰	Cross-sectional	3428	France	HIV negative MSMs	App-based recruitment, online recruitment and text message reminders	Rectal, pharyngeal and urine	Participants were recruited online to study the feasibility of a at-home screening program, the rate of positive test results, and the factors associated with positivity.
Regimbal-Éthier et al. 2018 ³¹	Cross-sectional	708	Canada	Anyone with access to the website	Online questionnaire	Not specified	Participants accessing the website completed a self- assessment and presented to the clinic for a self-sampling collection.
Sambri et al. 2017 ³²	Cross-sectional	78	Italy	Employees of a private industry	None	Vaginal	Subjects were given two self- sampling diagnostic tools to conduct at home and a questionnaire.
Schick et al. 2015 ³³	Cross-sectional	80	USA	WSWM	None	Oral, vaginal and/or anal	Participants were interviewed and performed self-sampling swab tests, notified of results by their method of choice and email.
Sexton et al. 2013 ³⁴	Cross-sectional DAS	374	USA	MSM who had sex with a man in the previous 6 months	None	Pharyngeal and rectal	Patients requesting a STI test performed self-sampling kit after viewing written and pictorial instructions and were also screened by clinic staff.

Shipitsyna et al. 2013 ³⁵	Cross-sectional	1207	Russia	Sexually active attendees of a youth centre (15 – 25 years old)	None	Vaginal (female) and urine (male)	Participants were asked to provide a self-sample and a questionnaire.
Silva et al. 2020 ³⁶	Cross-sectional	680	Portugal	Women of childbearing age from 2010 to 2016	None	Vaginal	Participants were asked to provide a self-sample and fill a questionnaire.
Sultan et al. 2016 ³⁷	Cross-sectional	154	UK	Men and women	None	Not specified	Participants that had tested positive for a conventional test at the clinic were asked to provide a self-sample done at home.
van de Wijgert et al. 2006 ³⁸	RCT DAS	450	South Africa	Adult women	None	Vaginal	Participants were surveyed and asked to self-sample with one tampon, or two swabs observed by nurse and nurse collected three vaginal swabs.
van der Helm et al. 2009 ³⁹	Cross-sectional DAS	2394	the Netherlands	MSM and women who attended two STI clinics	None	Rectal	Participants were invited to test with self-sampling in addition to conventional testing and filled a questionnaire.
Weng et al. 2022 ⁴⁰	Cross-sectional	306	China	MSMs visiting an outreach centre	None	Rectal and urine	Rectal-self-collection was offered in 2 non-clinic settings to study prevalence of CT/GC and self-sampling acceptability.
Wiesenfeld et al. 2001 ⁴¹	Cross-sectional	228	USA	Female high- school students	None	Vaginal	Participants were asked to self- sample for a STI test and surveyed.
Wilson et al. 2020 ⁴²	Cross-sectional DAS	1793	UK	Women and MSM 16 years of age or older	None	Pharyngeal, rectal, and first-catch urine (males)/vulvovaginal swabs (females)	Participants presenting to the clinic were tested using self- sampling in addition to conventional testing and filled a questionnaire.

Wilson et al. 2020 ⁴³	Cross-sectional DAS	1793	UK	Women and MSM 16 years of age or older	None	Pharyngeal, rectal, and first-catch urine (males)/vulvovaginal swabs (females)	Participants presenting to the clinic were tested using self- sampling in addition to conventional testing and filled a questionnaire.
Wong et al. 2022 ⁴⁴	Cohort	204	China	HIV negative MSMs	Website-based test ordering and text message reminder	Rectal, pharyngeal and urine	HIV-negative MSM aged 18 years or older made appointments on a designated website for baseline and follow-up visits at 3-monthly intervals to determine engagement with self-sampling program and prevalence of CT/NG and other STIs.
Wood et al. 2014 ⁴⁵	Cohort	30	UK	MSM attending a sauna	None	Pharyngeal, urine and rectal	Participants had the option of choosing a self-sampling kit at home, at the site of outreach or conventional testing at the site of outreach.

MSM: men who have sex with men; PrEP: pre-exposure prophylaxis; CT: *Chlamydia trachomatis*; HIV: human immunodeficiency virus; GC: *Neisseria gon* STI: sexually transmitted infection; WSWM: women who have sex with women and men

- 1. Arias MJ, Dan; Gilchrist, Jodi; Luinstra, Kathy; Li, Jenny; Smieja, Marek; Chernesky, Max A. Ease, Comfort, and Performance of the HerSwab Vaginal Self-Sampling Device for the Detection of Chlamydia trachomatis and Neisseria gonorrhoeae. *Sexually Transmitted Diseases* 2016;**43**(2):125-29.
- Bernstein KTK, Robert P.; Philip, Susan; Freeman, Alexandra H.; Rauch, Leah M.; Klausner, Jeffrey D. Evaluation of self-collected versus clinician-collected swabs for the detection of chlamydia trachomatis and neisseria gonorrhoeae pharyngeal infection among men who have sex with men. Sexually Transmitted Diseases 2011;38(11):1036-39.
- 3. Berry L, Stanley B. Comparison of self-collected meatal swabs with urine specimens for the diagnosis of Chlamydia trachomatis and Neisseria gonorrhoeae in men. *J Med Microbiol* 2017;**66**(2):134-36.
- 4. Camus C, Penaranda G, Khiri H, et al. Acceptability and efficacy of vaginal self-sampling for genital infection and bacterial vaginosis: A crosssectional study. *PLoS One* 2021;**16(11 November) (no pagination)**.

- 5. Chai SJA, Bulbulgul; Barnes, Mathilda; Jett-Goheen, Mary; Quinn, Nicole; Agreda, Patricia; Hogan, Terry; Gaydos, Charlotte A.; Whittle, Pamela; Jenkins, Wiley D.; Rietmeijer, Cornelis A. Internet-based screening for sexually transmitted infections to reach nonclinic populations in the community: Risk factors for infection in men. *Sexually Transmitted Diseases* 2010;**37**(12):756-63.
- 6. Charin G, Symonds Y, Scholfield C, et al. Three-site screening for STIs in men who have sex with men using online self-testing in an English sexual health service. *Sex transm infect* 2022.
- 7. Chernesky M. Comparison of a new aptima specimen collection and transportation kit to I-pap for detection of C trachomatis, N gonorrhoeae and T vaginalis in cervical and vaginal specimens. *Sexually Transmitted Infections* 2011;87(SUPPL. 1):A73-A74.
- 8. Chinnock BFM, Jessica; Yore, Mackensie; Lopez, Diana; Farshidpour, Leyla; Kremer, Mallory. Vaginal self-sampling is not inferior to provider endocervical sampling for gonorrhea and chlamydia diagnosis. *Academic Emergency Medicine* 2020;**27**(Supplement 1):S214-S15.
- 9. Conejero Roos CC, Gigliola; Merino, Paulina M.; Castro, Magdalena; Schulin-Zeuthen, Carolina; Bollmann, Josefina; Hidalgo, Camila. Screening of Neisseria gonorrhoeae and Chlamydia trachomatis using techniques of self collected vaginal sample in young women. *Revista Chilena de Infectologia* 2013;**30**(5):489-93.
- 10. De Baetselier IS, Hilde; Abdellati, Said; De Deken, Benedicte; Cuylaerts, Vicky; Crucitti, Tania; Reyniers, Thijs; Vuylsteke, Bea. Evaluation of the 'Colli-Pee', a first-void urine collection device for self-sampling at home for the detection of sexually transmitted infections, versus a routine clinic-based urine collection in a one-to-one comparison study design: Efficacy and acceptability among MSM in Belgium. BMJ Open 2019;9(4):e028145.
- 11. Dukers–Muijrers NHTM, Heijman T, Götz HM, et al. Participation, retention, and associated factors of women in a prospective multicenter study on Chlamydia trachomatis infections (FemCure). *PLoS One* 2020;**15**(3):e0230413.
- 12. Estcourt CS, Gibbs J, Sutcliffe LJ, et al. The eSexual Health Clinic system for management, prevention, and control of sexually transmitted infections: exploratory studies in people testing for Chlamydia trachomatis. *Lancet Public Health* 2017;**2**(4):e182-e90.
- 13. Galvez TM, Flores JA, Pérez DG, et al. Concordance between self-sampling and standar endocervical sample collection to identify sexual transmission infections in an urban-rural area of Peru. *Rev Peru Med Exp Salud Publica* 2021;**38**(1):83-88.
- 14. Grabert BK, Islam JY, Kabare E, et al. Testing for Sexually Transmitted Infection Using Wet and Dry Self-Collected Brush Samples Among Women in Mombasa, Kenya. *Sexually Transmitted Diseases* 2022;**49(9)**:E100-E03.
- 15. Grandahl ML, Margareta; Mohammad, Jamila; Herrmann, Bjorn. Users' opinions of internet-based self-sampling tests for chlamydia trachomatis and neisseria gonorrhoeae in Sweden. *Acta Dermato-Venereologica* 2020;**100**(18):1-6.
- 16. Habel MA, Brookmeyer KA, Oliver-Veronesi R, et al. Creating Innovative Sexually Transmitted Infection Testing Options for University Students: The Impact of an STI Self-testing Program. *Sex Transm Dis* 2018;**45**(4):272-77.
- 17. Harvey-Lavoie S, Apelian H, Labbé A-C, et al. Community-Based Prevalence Estimates of Chlamydia trachomatis and Neisseria gonorrhoeae Infections Among Gay, Bisexual, and Other Men Who Have Sex With Men in Montréal, Canada. *Sex Transm Dis* 2021;**48**(12):939-44.
- 18. Holland-Hall CMW, H. C.; Murray, P. J. Self-collected vaginal swabs for the detection of multiple sexually transmitted infections in adolescent girls. *Journal of Pediatric and Adolescent Gynecology* 2002;**15**(5):307-13.
- 19. Kanji J, Gee S, Smyczek P, et al. Evaluation of Vaginal Specimens for the Detection of C. Trachomatis (CT) and N. Gonorrhoeae (GC) in High Risk Females Attending Sexually Transmitted Infection (STI) Clinics in Alberta, Canada. *STD prevention conference* 2016.

- 20. Ladd JH, Yu-Hsiang; Barnes, Mathilda; Quinn, Nicole; Jett-Goheen, Mary; Gaydos, Charlotte A. Female users of internet-based screening for rectal STIs: Descriptive statistics and correlates of positivity. *Sexually Transmitted Infections* 2014;**90**(6):485-90.
- 21. Leenen JvL, I. H. M.; Wolffs, P. F. G.; Hoebe, C. J. P. A.; Ackens, R. P.; Posthouwer, D.; Dukers-Muijrers*, N. H. T. M. Pilot implementation of a home-care programme with chlamydia, gonorrhoea, hepatitis B, and syphilis self-sampling in HIV-positive men who have sex with men. *BMC Infectious Diseases* 2020;**20**(1):925.
- 22. Lippman SA, Jones HE, Luppi CG, et al. Home-based self-sampling and self-testing for sexually transmitted infections: acceptable and feasible alternatives to provider-based screening in low-income women in São Paulo, Brazil. *Sex Transm Dis* 2007;**34**(7):421-8.
- 23. Lockhart AP, Matt; Ting, Jie; Campbell, Sara; Mugo, Nelly; Kwatampora, Jessie; Chitwa, Michael; Kimani, Joshua; Gakure, Anne; Smith, Jennifer S. Prospective Evaluation of Cervicovaginal Self- and Cervical Physician Collection for the Detection of Chlamydia trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis, and Mycoplasma genitalium Infections. *Sexually Transmitted Diseases* 2018;**45**(7):488-93.
- 24. Mabonga EM, Joshua K.; Nabaggala, Maria S.; Kiragga, Agnes; Kisakye, Jennifer; Manabe, Yukari C.; Elbireer, Ali; Gaydos, Charlotte A.; Taylor, Chris; Parkes-Ratanshi, Rosalind. Prevalence and predictors of asymptomatic Chlamydia trachomatis and Neisseria gonorrhoeae in a Ugandan population most at risk of HIV transmission. *International Journal of STD and AIDS* 2021;**32**(6):510-16.
- 25. Masek BJA, Nick; Quinn, Nicole; Aumakhan, Bulbul; Holden, Jeff; Hardick, Andrew; Agreda, Patricia; Barnes, Mathilda; Gaydos, Charlotte A. Performance of three nucleic acid amplification tests for detection of Chlamydia trachomatis and Neisseria gonorrhoeae by use of selfcollected vaginal swabs obtained via an internet-based screening program. *Journal of Clinical Microbiology* 2009;**47**(6):1663-67.
- 26. McCartney DJ, Pinheiro TF, Gomez JL, et al. Acceptability of self-sampling for etiological diagnosis of mucosal sexually transmitted infections (STIs) among transgender women in a longitudinal cohort study in São Paulo, Brazil. *Braz J Infect Dis* 2022;**26**(3):102356.
- 27. Nodjikouambaye ZAMB, Ralph-Sydney; Veyer, David; Robin, Leman; Compain, Fabrice; Pere, Helene; Belec, Laurent; Sadjoli, Damtheou; Adawaye, Chatte; Tonen-Wolyec, Serge; Moussa, Ali Mahamat; Koyalta, Donato. Accuracy of curable sexually transmitted infections and genital mycoplasmas screening by multiplex real-time PCR using a self-collected veil among adult women in Sub-Saharan Africa. Infectious Diseases in Obstetrics and Gynecology 2019;2019:8639510.
- 28. Perkins RCD, A.; Douglass, G.; Ta, V.; Fomundam, M.; Li, Y.; Plankey, M. Sexually transmitted infection screening among HIV-negative men and women seeking HIV-testing only: Missed opportunity for HIV prevention? *Sexually Transmitted Infections* 2013;**89**(SUPPL. 1).
- 29. Platteau T, De Baetselier I, Van Mieghem H, et al. Sexually Transmitted Infections and Associated Risk Factors Among Male Clients of Sex Workers: A Cross-Sectional Pilot Project in Antwerp, Belgium. *Front Reprod Health* 2022;**4**:837102-02.
- 30. Rahib D, Bercot B, Delagreverie H, et al. Online self-sampling kits for human immunodeficiency virus and other sexually transmitted infections: Feasibility, positivity rates, and factors associated with infections in France. *Int J STD AIDS* 2022;**33**(4):355-62.
- 31. Regimbal-Ethier MB, K.; To, V.; Quesnel, M. Prelib: Evaluating a newly launched Canadian provider of innovative internet-based services for self-directed HIV and STI screening. *HIV Medicine* 2019;**20**(Supplement 9):195.
- 32. Sambri VD, Giorgio; Farabegoli, Patrizia. How to facilitate and improve screening of sexually-transmitted infections in women population. *Sexually Transmitted Infections* 2017;**93**(Supplement 2):A64-A65.
- 33. Schick VVDP, Barbara; Dodge, Brian; Baldwin, Aleta; Dennis Fortenberry, J. A mixed methods approach to assess the likelihood of testing for STI using self-collected samples among behaviourally bisexual women. *Sexually Transmitted Infections* 2015;**91**(5):329-33.

- 34. Sexton MEB, Joseph J.; Nakagawa, Keisuke; Perkins, Rodney; Baker, Daniel C.; Jucha, Brian; Li, Ying; Plankey, Michael W.; Slack, Rebecca S.; Arora, Sameer. How reliable is self-testing for gonorrhea and chlamydia among men who have sex with men? *Journal of Family Practice* 2013;**62**(2):70-78.
- 35. Shipitsyna EK, T.; Ryzhkova, O.; Krysanova, A.; Grigoryev, A.; Savicheva, A.; Ryzhikh, P.; Guschin, A.; Unemo, M. Prevalence of sexually transmitted infections in young people in St. Petersburg, Russia, as Determined using self-collected non-invasive specimens. *Sexually Transmitted Infections* 2013;**89**(SUPPL. 1).
- 36. Silva JT, Ana Luisa; Cerqueira, Fatima; Campainha, Rui; Amorim, Jose; Medeiros, Rui. Prevalence of Neisseria gonorrhoeae and Trichomonas vaginalis in Portuguese women of childbearing age. *Journal of Obstetrics and Gynaecology* 2021;**41**(2):254-58.
- 37. Sultan BO, Clare; Brima, Nataliya; Benn, Paul; Schembri, Gabriel; Patel, Hemi; Ison, Cathy. The acceptability of self-sampling at home for chlamydia trachomatis and neisseria gonorrhoeae in men and women; results from the feasibility study to determine the time taken for naats tests to become negative following treatment for chlamydia trachomatis and neisseria gonorrhoeae in men and women. *Sexually Transmitted Infections* 2016;**92**(Supplement 1):A87.
- 38. Van De Wijgert JJ, Heidi; Altini, Lydia; De Kock, Alana; Young, Taryn; Williamson, Anna-Lise; Hoosen, Anwar; Coetzee, Nicol. Two methods of self-sampling compared to clinician sampling to detect reproductive tract infections in Gugulethu, South Africa. Sexually Transmitted Diseases 2006;33(8):516-23.
- 39. van der Helm JJ, Hoebe CJ, van Rooijen MS, et al. High performance and acceptability of self-collected rectal swabs for diagnosis of Chlamydia trachomatis and Neisseria gonorrhoeae in men who have sex with men and women. *Sex Transm Dis* 2009;**36**(8):493-7.
- 40. Weng R, Ning N, Zhang C, et al. Acceptability of rectal self-sampling in non-clinical venues for chlamydia and gonorrhea testing among men who have sex with men: A cross-sectional study in Shenzhen, China. *Front Public Health* 2022;**10**:992773-73.
- 41. Wiesenfeld HCL, Donna L. B.; Heine, R. Phillips; Krohn, Marijane A.; Bittner, Heather; Kellinger, Kathleen; Shultz, Maryann; Sweet, Richard L. Self-collection of vaginal swabs for the detection of chlamydia, gonorrhea, and trichomoniasis: Opportunity to encourage sexually transmitted disease testing among adolescents. *Sexually Transmitted Diseases* 2001;**28**(6):321-25.
- 42. Wilson JDW, Harriet E.; Loftus-Keeling, Michelle; Ward, Helen; Davies, Bethan; Vargas-Palacios, Armando; Hulme, Claire; Wilcox, Mark H. Swab-yourself trial with economic monitoring and testing for infections collectively (SYSTEMATIC): Part 1. A diagnostic accuracy, and cost-effectiveness, study comparing clinician-taken versus self-taken rectal and pharyngeal samples for the diagnosis of gonorrhoea and chlamydia. *Clinical infectious diseases : an official publication of the Infectious Diseases Society of America* 2020.
- 43. Wilson JD, Wallace HE, Loftus-Keeling M, et al. Swab-yourself trial with economic monitoring and testing for infections collectively (SYSTEMATIC): Part 2. A diagnostic accuracy, and cost-effectiveness, study comparing rectal, pharyngeal and urogenital samples analysed individually, versus as a pooled specimen, for the diagnosis of gonorrhoea and chlamydia. *Clin Infect Dis* 2020.
- 44. Wong NS, Kwan TH, Chan DPC, et al. Regular Testing of HIV and Sexually Transmitted Infections With Self-Collected Samples From Multiple Anatomic Sites to Monitor Sexual Health in Men Who Have Sex With Men: Longitudinal Study. *JMIR Form Res* 2022;**6**(11):e40996.
- 45. Wood ME, R.; Grobicki, M. Outreach sexual infection screening and postal tests in men who have sex with men: How do they compare with clinicbased screening? *HIV Medicine* 2014;**15**(SUPPL. 3):32.