Skip to main content
Log in

Steroid hormones alter AMP hydrolysis in intact trophozoites of Trichomonas vaginalis

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Trichomonas vaginalis infection may be influenced by the vaginal concentrations of estrogens. We have investigated the effects of 17β-estradiol and dehydroepiandrosterone sulfate (DHEAS) on the ecto-5′-nucleotidase activity in fresh clinical (VP60) and in long-term-grown (30236 ATCC) isolates of T. vaginalis. In vitro exposure to DHEAS and 17β-estradiol did not induce any changes in adenosine monophosphate (AMP) hydrolysis in these isolates. The treatment of parasites in the presence of DHEAS (0.01–1.0 µM) for 2 h inhibited AMP hydrolysis in VP60 isolate, whereas there were no significant changes in nucleotide hydrolysis in the presence of 17β-estradiol. DHEAS and 17β-estradiol (0.01–1.0 µM) for 2 h inhibited AMP hydrolysis in 30236 isolate. The 12 treatment with 0.1 µM DHEAS inhibited AMP hydrolysis, whereas 17β-estradiol did not alter the nucleotide hydrolysis in VP60 isolate. Our findings have shown that the complex effect of steroid hormones and their receptors on T. vaginalis may promote changes in ecto-5′-nucleotidase activity during exposure to these hormones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abell TL, Riely CA (1992) Hyperemesis gravidarum. Gastroenterol Clin North Am 21:835–849

    CAS  PubMed  Google Scholar 

  • Ayi K, Giribaldi G, Skorokhod A, Schwarzer E, Prendergast PT, Arese P (2002) 16alpha-bromoepiandrosterone, an antimalarial analogue of the hormone dehydroepiandrosterone, enhances phagocytosis of ring stage parasitized erythrocytes: a novel mechanism for antimalarial activity. Antimicrob Agents Chemother 46:3180–3184

    Article  CAS  PubMed  Google Scholar 

  • Bakare RA, Ashiru JO, Adeyemi-Doro FA, Ekweozor CC, Oni AA, Okesola AO, Adebayo JA (1999) Non-gonococcal urethritis (NGU) due to Trichomonas vaginalis in Ibadan. West Afr J Med 18:64–68

    CAS  PubMed  Google Scholar 

  • Bianchi V, Spychala J (2003) Mammalian 5′-nucleotidases. J Biol Chem 278:46195–46198

    Article  CAS  PubMed  Google Scholar 

  • Borges FP, Gottardi B, Stuepp C, Larré AB, Tasca T, De Carli GA, Bonan CD (2007) Characterization of an ecto-5′-nucleotidase (EC 3.1.3.5) activity in intact trophozoites of Trichomonas gallinae. Vet Parasitol 143(2):106–111

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quanties of protein utilizing the principle of protein-dye binding. Anal Biochem 72:218–254

    Article  Google Scholar 

  • Brown MT (1972) Trichomoniasis. Practitioner 209:639–644

    CAS  PubMed  Google Scholar 

  • Carrero JC, Cervantes C, Moreno-Mendoza N, Saavedra E, Morales-Montor J, Laclette JP (2006) Dehydroepiandrosterone decreases while cortisol increases in vitro growth and viability of Entamoeba histolytica. Microbes Infect 8:323–331

    Article  CAS  PubMed  Google Scholar 

  • Chan KM, Delfert D, Junger KD (1986) A direct colorimetric assay for Ca2+ -stimulated ATPase activity. Anal Biochem 157:375–380

    Article  CAS  PubMed  Google Scholar 

  • Cotch MF, Pastorek JG, Nugent RP, Hillier SL, Gibbs RS, Martin DH, Eschenbach DA, Edelman R, Carey JC, Regan JA, Krohn MA, Klebanoff MA, Rao AV, Rhoads GG (1997) Trichomonas vaginalis associated with low birth weight and preterm delivery. The Vaginal Infections and Prematurity Study Group. Sex Transm Dis 24:353–360

    Article  CAS  PubMed  Google Scholar 

  • Depue RH, Bernstein L, Ross RK, Judd HL, Henderson BE (1987) Hyperemesis gravidarum in relation to estradiol levels, pregnancy outcome, and other maternal factors: a seroepidemiologic study. Am J Obstet Gynecol 156:1137–1141

    CAS  PubMed  Google Scholar 

  • Diamond LS (1957) The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol 43:488–490

    Article  CAS  PubMed  Google Scholar 

  • Filippini A, Taffs RE, Sitkovsky MV (1990) Extracellular ATP in T-lymphocyte activation: possible role in effector functions. Proc Natl Acad Sci USA 87:8267–8271

    Article  CAS  PubMed  Google Scholar 

  • Ford LC, Hammill HA, DeLange RJ, Bruckner DA, Suzuki-Chavez F, Mickus KL, Lebherz TB (1987) Determination of estrogen and androgen receptors in Trichomonas vaginalis and the effects of antihormones. Am J Obstet Gynecol 156:1119–1121

    CAS  PubMed  Google Scholar 

  • Garber GA, Lemchuk-Favel LT, Rousseau G (1991) Effect of beta-estradiol on production of the cell-detaching factor of Trichomonas vaginalis. J Clin Microbiol 29:1847–1849

    CAS  PubMed  Google Scholar 

  • Goodwin TM, Montoro M, Mestman JH, Pekary AE, Hershman JM (1992) The role of chorionic gonadotropin in transient hyperthyroidism of hyperemesis gravidarum. J Clin endocrinol Metab 75:1333–1337

    Article  CAS  PubMed  Google Scholar 

  • Grodstein F, Goldman MB, Cramer DW (1993) Relation of tubal infertility to history of sexually transmitted diseases. Am J Epidemiol 137:577–584

    CAS  PubMed  Google Scholar 

  • Grossman CJ (1984) Regulation of the immune system by sex steroids. Endocr Rev 5:435–455

    Article  CAS  PubMed  Google Scholar 

  • Guenthner PC, Secor WE, Dezzutti CS (2005) Trichomonas vaginalis-induced epithelial monolayer disruption and human immunodeficiency virus type 1 (HIV-1) replication: implications for the sexual transmission of HIV-1. Infect Immun 73:4155–4160

    Article  CAS  PubMed  Google Scholar 

  • Haskó G, Cronstein BN (2004) Adenosine: an endogenous regulator of innate immunity. Trends Parasitol 25:33–39

    Google Scholar 

  • Leenstra T, Ter Kuile FO, Kariuki SK, Nixon CP, Oloo AJ, Kager PA, Kurtis JD (2003) Dehydroepiandrosterone sulfate levels associated with decreased malaria parasite density and increased hemoglobin concentration in pubertal girls from western Kenya. J Infect Dis 188:297–304

    Article  CAS  PubMed  Google Scholar 

  • Lirosi G, Guarascio A (1972) Effeti delle modificazioni ormonali dell ambiente vaginala nella terapia dell vaginiti specie de Trichomonas. Minerva Ginecol 24:23–27

    CAS  PubMed  Google Scholar 

  • Mason PR, Fiori PL, Cappuccinelli P, Rappelli P, Gregson S (2005) Seroepidemiology of Trichomonas vaginalis in rural women in Zimbabwe and patterns of association with HIV infection. Epidemiol Infect 133:315–323

    Article  PubMed  Google Scholar 

  • Michel R, Borges F, Wiltuschnig R, Vieira PB, Tasca T, De Carli GA (2006) Prevalência da tricomonose em mulheres residentes na Vila dos Papeleiros em Porto Alegre, RS. Rev Bras Anal Clin 38:127–130

    Google Scholar 

  • Moodley P, Wilkinson D, Connolly C, Moodley J, Sturm AW (2002) Trichomonas vaginalis is associated with pelvic inflammatory disease in women infected with human immunodeficiency virus. Clin Infect Dis 34:519–522

    Article  PubMed  Google Scholar 

  • Morales-Montor J, Mohamed F, Ghaleb AM, Baig S, Hallal-Calleros C, Damian RT (2001) In vitro effects of hypothalamic-pituitary-adrenal axis (HPA) hormones on Schistosoma mansoni. J Parasitol 87:1132–1139

    CAS  PubMed  Google Scholar 

  • Munagala NR, Wang CC (2003) Adenosine is the primary precursor of all purine nucleotides in Trichomonas vaginalis. Mol Biochem Parasitol 127:143–149

    Article  CAS  PubMed  Google Scholar 

  • Murphy BM (2001) Hormonal control of enzyme activity during the plasma membrane transformation of uterine epithelial cells. Cell Biol Int 20:5420–5430

    Google Scholar 

  • Olsen NJ, Kovacs WJ (2005) Gonadal steroids and immunity. Endocr Rev 17:369–384

    Google Scholar 

  • Petrin D, Delgaty K, Bhatt R, Garber G (1998) Clinical and microbiological aspects of Trichomonas vaginalis. Clin Microbiol Rev 11:300–317

    CAS  PubMed  Google Scholar 

  • Ramalingam V, Krishnamoorthy G, Govindarajulu P (1993) Plasma membrane enzymes in human breast carcinoma: relationship with serum hormones. Neoplasma 40:363–367

    CAS  PubMed  Google Scholar 

  • Roberts CW, Walker W, Alexander J (2001) Sex-associated hormones and immunity to protozoan parasites. Clin Microbiol Rev 14:476–488

    Article  CAS  PubMed  Google Scholar 

  • Robson SC, Sévigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2:409–430

    Article  CAS  PubMed  Google Scholar 

  • Rücker B, Pochmann D, Fürstenau CR, Carneiro-Ramos MS, Battastini AM, Barreto-Chaves ML, Sarkis JJ (2005) Effects of steroid hormones on synaptosomal ectonucleotidase activities from hippocampus and cortex of adult female rats. Gen Comp Endocrinol 140(2):94–100

    Article  PubMed  Google Scholar 

  • Silva-Filho FC, Bonilha VL (1992) Effect of estrogens on the adhesion of Trichomonas vaginalis to epithelial cells in vitro. Braz J Med Biol Res 25:9–18

    CAS  PubMed  Google Scholar 

  • Spychala J, Lazarowski E, Ostapkowicz A, Ayscue LH, Jin A, Mitchell BS (2004) Role of estrogen receptor in the regulation of ecto-5′-nucleotidase and adenosine in breast cancer. Clin Cancer Res 10:708–717

    Article  CAS  PubMed  Google Scholar 

  • Steinberg TH, Di Virgilio F (1991) Cell-mediated cytotoxicity: ATP as an effector and the role of target cells. Curr Opin Immunol 3:71–75

    Article  CAS  PubMed  Google Scholar 

  • Sträter N (2006) Ecto-5′-nucleotidase: structure function relationships. Purinergic Signal 2:343–350

    Article  PubMed  Google Scholar 

  • Sugarman B, Mummaw N (1988) The effect of hormones on Trichomonas vaginalis. J Gen Microbiol 134:1623–1628

    CAS  PubMed  Google Scholar 

  • Sutcliffe S, Giovannucci E, Alderete JF, Chang TH, Gaydos CA, Zenilman JM, De Marzo AM, Willett WC, Platz EA (2006) Plasma antibodies against Trichomonas vaginalis and subsequent risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 15:939–945

    Article  CAS  PubMed  Google Scholar 

  • Tasca T, Bonan CD, De Carli GA, Battastini AMO, Sarkis JJF (2003) Characterization of an ecto-5′-nucleotidase (EC 3.1.3.5) activity in intact cells of Trichomonas vaginalis. Exp Parasitol 105:167–173

    Article  CAS  PubMed  Google Scholar 

  • Tasca T, Bonan CD, De Carli GA, Sarkis JJ (2004) Trichomonas vaginalis: cytochemical localization of a NTPDase1 and an ecto-5′-nucleotidase and effects of adenine nucleotides on cellular viability. Parasitol Res 93:300–303

    Article  PubMed  Google Scholar 

  • Tasca T, Bonan CD, De Carli GA, Sarkis JJ, Alderete JF (2005) Heterogeneity in extracellular nucleotide hydrolysis among clinical isolates of Trichomonas vaginalis. Parasitology 131:71–78

    Article  CAS  PubMed  Google Scholar 

  • Viikki M, Pukkala E, Nieminen P, Hakama M (2000) Gynaecological infections as risk determinants of subsequent cervical neoplasia. Acta Oncol 39:71–75

    Article  CAS  PubMed  Google Scholar 

  • Wang CC (1990) Nucleic acid metabolism in Trichomonas vaginalis. In: Honigberg BM (ed) Trichomonads parasitic in humans. Springer-Verlag, New York, pp 84–90

    Google Scholar 

  • Yoneyama Y, Kobayashi H, Kato M, Chihara H, Yamada T, Otsubo Y, Araki T (2002) Plasma 5′-nucleotidase activities increase in women with hyperemesis gravidarum. Clin Biochem 35:561–564

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann H (1992) 5′-Nucleotidase: molecular structure and functional aspects. Biochem J 285:345–365

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), and Programa de Bolsa/Pesquisa para alunos da Graduação, BPA/PUCRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Denise Bonan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rückert, C., Stuepp, C.d.S., Gottardi, B. et al. Steroid hormones alter AMP hydrolysis in intact trophozoites of Trichomonas vaginalis . Parasitol Res 105, 1701–1706 (2009). https://doi.org/10.1007/s00436-009-1618-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-009-1618-3

Keywords

Navigation